Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39109673

RESUMEN

Organism health relies on cell proliferation, migration, and differentiation. These universal processes depend on cytoplasmic reorganization driven notably by the cytoskeleton and its force-generating motors. Their activity generates forces that mechanically agitate the cell nucleus and its interior. New evidence from reproductive cell biology revealed that these cytoskeletal forces can be tuned to remodel nuclear membrane-less compartments, known as biomolecular condensates, and regulate their RNA processing function for the success of subsequent cell division that is critical for fertility. Both cytoskeletal and nuclear condensate reorganization are common to numerous physiological and pathological contexts, raising the possibility that mechanical remodeling of nuclear condensates may be a much broader mechanism regulating their function. Here, we review this newfound mechanism of condensate remodeling and venture into contexts of health and disease where it may be relevant, with a focus on reproduction, cancer, and premature aging.

2.
J Vis Exp ; (203)2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38284534

RESUMEN

A major challenge in understanding the causes of female infertility is to elucidate mechanisms governing the development of female germ cells, named oocytes. Their development is marked by cell growth and subsequent divisions, two critical phases that prepare the oocyte for fusion with sperm to initiate embryogenesis. During growth, oocytes reorganize their cytoplasm to position the nucleus at the cell center, an event predictive of successful oocyte development in mice and humans and, thus, their embryogenic potential. In mouse oocytes, this cytoplasmic reorganization was shown to be driven by the cytoskeleton, the activity of which generates mechanical forces that agitate, reposition, and penetrate the nucleus. Consequently, this cytoplasmic-to-nucleoplasmic force transmission tunes the dynamics of nuclear RNA-processing organelles known as biomolecular condensates. This protocol provides an experimental framework to document, with high temporal resolution, the impact of the cytoskeleton on the nucleus across spatial scales in mouse oocytes. It details the imaging and image analysis steps and tools necessary to evaluate i) cytoskeletal activity in the oocyte cytoplasm, ii) cytoskeleton-based agitation of the oocyte nucleus, and iii) its effects on biomolecular condensate dynamics in the oocyte nucleoplasm. Beyond oocyte biology, the methods elaborated here can be adapted for use in somatic cells to similarly address cytoskeleton-based tuning of nuclear dynamics across scales.


Asunto(s)
Citoesqueleto , Semen , Humanos , Masculino , Femenino , Ratones , Animales , Oocitos , Citoplasma , Núcleo Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA