Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nanomedicine ; 61: 102767, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38906391

RESUMEN

The use of mesenchymal stromal cells (MSCs) for treating chronic inflammatory disorders, wounds, and ischemia-reperfusion injuries has shown improved healing efficacy. However, the poor survival rate of transplanted cells due to oxidative stress in injured or inflamed tissue remains a significant concern for MSC-based therapies. In this study, we developed a new approach to protect MSCs from oxidative stress, thereby improving their survival in a wound microenvironment and enhancing their therapeutic effect. We produced PLGA nanoparticles loaded with the cytoprotective phytochemical silibinin (SBN), and used them to modify MSCs. Upon internalization, these nanoformulations released SBN, activating the Nrf2/ARE signaling pathway, resulting in threefold reduction in intracellular ROS content and improved cell survival under oxidative stress conditions. Modification of MSCs with SBN-loaded PLGA nanoparticles increased their survival upon transplantation to full-thickness cutaneous wounds and improved wound healing. This study suggests that MSC modification with cytoprotective nanoparticles could be a promising approach for improving wound healing.


Asunto(s)
Células Madre Mesenquimatosas , Nanopartículas , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Silibina , Cicatrización de Heridas , Cicatrización de Heridas/efectos de los fármacos , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/citología , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/farmacología , Animales , Nanopartículas/química , Silibina/farmacología , Silibina/química , Ratones , Trasplante de Células Madre Mesenquimatosas/métodos , Estrés Oxidativo/efectos de los fármacos , Humanos , Piel/efectos de los fármacos , Piel/patología , Piel/lesiones , Factor 2 Relacionado con NF-E2/metabolismo , Supervivencia Celular/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Antioxidantes/farmacología , Antioxidantes/química
2.
Curr Gene Ther ; 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38798208

RESUMEN

An analysis of mammalian genomes has revealed a significant number of DNA sequences with transposon or viral origin. Some of these elements encode functional proteins, repurposed during evolution to play significant physiological roles in certain tissues. Some human virus-like proteins, such as Peg10 and Arc/Arg3.1, structurally demonstrate significant similarity with Gag retroviral proteins, while others, like syncytins-1 and -2, resemble envelope viral proteins. In recent years, it has become clear that these proteins can be exploited for bioengineering 'humanized' capsid particles aimed at targeted mRNA delivery. Realizing this idea could provide efficient virus-like particles for gene therapy and address the problem of viral vector immunogenicity. This review provides an overview of the most-studied human proteins of viral or transposon origin and highlights their biological functions. Additionally, recent advances in exploiting these proteins for targeted mRNA delivery and prospects for their clinical application are discussed.

3.
Biochim Biophys Acta Gen Subj ; 1868(1): 130522, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37995879

RESUMEN

BACKGROUND: Activity-regulated cytoskeleton-associated (Arc) protein is predominantly expressed in excitatory glutamatergic neurons of vertebrates, where it plays a pivotal role in regulation of synaptic plasticity. Arc protein forms capsid-like particles, which can encapsulate and transfer mRNA in extracellular vesicles (EVs) between hippocampal neurons. Once glioma cell networks actively interact with neurons via paracrine signaling and formation of neurogliomal glutamatergic synapses, we predicted the involvement of Arc in a process of EV-mediated mRNA transfer between glioma cells. MATERIALS AND METHODS: Arc expression in three human glioma cell lines was evaluated by WB and immunocytochemistry. The properties of Arc protein/mRNA-containing EVs produced by glioma cells were analyzed by RT-PCR, TEM, and WB. Flow cytometry, RT-PCR, and fluorescent microscopy were used to show the involvement of Arc in EV-mediated mRNA transfer between glioma cells. RESULTS: It was found that human glioma cells can produce EVs containing Arc/Arg3.1 protein and Arc mRNA (or "Arc EVs"). Arc EVs from U87 glioma cells internalize and deliver Arc mRNA to recipient U87 cells, where it is translated into a protein. Arc overexpression significantly increases EV production, alters EV morphology, and enhances intercellular transfer of highly expressed mRNA in glioma cell culture. CONCLUSION: These findings indicate involvement of Arc EVs into mRNA transfer between glioma cells that could contribute to tumor progression and affect synaptic plasticity in cancer patients.


Asunto(s)
Vesículas Extracelulares , Glioma , Animales , Humanos , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Productos del Gen gag/química , Productos del Gen gag/genética , Vesículas Extracelulares/metabolismo , Glioma/genética
4.
Pharmaceutics ; 15(5)2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37242762

RESUMEN

Metal-organic frameworks (MOFs) are a highly versatile class of ordered porous materials, which hold great promise for different biomedical applications, including antibacterial therapy. In light of the antibacterial effects, these nanomaterials can be attractive for several reasons. First, MOFs exhibit a high loading capacity for numerous antibacterial drugs, including antibiotics, photosensitizers, and/or photothermal molecules. The inherent micro- or meso-porosity of MOF structures enables their use as nanocarriers for simultaneous encapsulation of multiple drugs resulting in a combined therapeutic effect. In addition to being encapsulated into an MOF's pores, antibacterial agents can sometimes be directly incorporated into an MOF skeleton as organic linkers. Next, MOFs contain coordinated metal ions in their structure. Incorporation of Fe2/3+, Cu2+, Zn2+, Co2+, and Ag+ can significantly increase the innate cytotoxicity of these materials for bacteria and cause a synergistic effect. Finally, abundance of functional groups enables modifying the external surface of MOF particles with stealth coating and ligand moieties for improved drug delivery. To date, there are a number of MOF-based nanomedicines available for the treatment of bacterial infections. This review is focused on biomedical consideration of MOF nano-formulations designed for the therapy of intracellular infections such as Staphylococcus aureus, Mycobacterium tuberculosis, and Chlamydia trachomatis. Increasing knowledge about the ability of MOF nanoparticles to accumulate in a pathogen intracellular niche in the host cells provides an excellent opportunity to use MOF-based nanomedicines for the eradication of persistent infections. Here, we discuss advantages and current limitations of MOFs, their clinical significance, and their prospects for the treatment of the mentioned infections.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA