Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Cell Mol Life Sci ; 78(16): 6051-6068, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34274977

RESUMEN

Two modes of motility have been reported for bi-directional kinesin-5 motors: (a) context-dependent directionality reversal, a mode in which motors undergo persistent minus-end directed motility at the single-molecule level and switch to plus-end directed motility in different assays or under different conditions, such as during MT gliding or antiparallel sliding or as a function of motor clustering; and (b) bi-directional motility, defined as movement in two directions in the same assay, without persistent unidirectional motility. Here, we examine how modulation of motor-microtubule (MT) interactions affects these two modes of motility for the bi-directional kinesin-5, Cin8. We report that the large insert in loop 8 (L8) within the motor domain of Cin8 increases the MT affinity of Cin8 in vivo and in vitro and is required for Cin8 intracellular functions. We consistently found that recombinant purified L8 directly binds MTs and L8 induces single Cin8 motors to behave according to context-dependent directionality reversal and bi-directional motility modes at intermediate ionic strength and according to a bi-directional motility mode in an MT surface-gliding assay under low motor density conditions. We propose that the largely unstructured L8 facilitates flexible anchoring of Cin8 to the MTs. This flexible anchoring enables the direct observation of bi-directional motility in motility assays. Remarkably, although L8-deleted Cin8 variants exhibit a strong minus-end directed bias at the single-molecule level, they also exhibit plus-end directed motility in an MT-gliding assay. Thus, L8-induced flexible MT anchoring is required for bi-directional motility of single Cin8 molecules but is not necessary for context-dependent directionality reversal of Cin8 in an MT-gliding assay.


Asunto(s)
Cinesinas/metabolismo , Microtúbulos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Movimiento/fisiología , Saccharomyces cerevisiae/metabolismo
2.
J Biol Chem ; 293(27): 10590-10605, 2018 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-29752405

RESUMEN

The reorganization of microtubules in mitosis, meiosis, and development requires the microtubule-severing activity of katanin. Katanin is a heterodimer composed of an ATPase associated with diverse cellular activities (AAA) subunit and a regulatory subunit. Microtubule severing requires ATP hydrolysis by katanin's conserved AAA ATPase domains. Whereas other AAA ATPases form stable hexamers, we show that katanin forms only a monomer or dimers of heterodimers in solution. Katanin oligomers consistent with hexamers of heterodimers or heterododecamers were only observed for an ATP hydrolysis-deficient mutant in the presence of ATP. X-ray structures of katanin's AAA ATPase in monomeric nucleotide-free and pseudo-oligomeric ADP-bound states revealed conformational changes in the AAA subdomains that explained the structural basis for the instability of the katanin heterododecamer. We propose that the rapid dissociation of katanin AAA oligomers may lead to an autoinhibited state that prevents inappropriate microtubule severing or that cyclical disassembly into heterodimers may critically contribute to the microtubule-severing mechanism.


Asunto(s)
Adenosina Trifosfatasas/química , Proteínas de Caenorhabditis elegans/química , Katanina/química , Meiosis , Adenosina Trifosfatasas/metabolismo , Animales , Caenorhabditis elegans/enzimología , Proteínas de Caenorhabditis elegans/metabolismo , Cristalografía por Rayos X , Humanos , Katanina/metabolismo , Microtúbulos , Conformación Proteica , Multimerización de Proteína , Huso Acromático
3.
J Cell Sci ; 130(4): 725-734, 2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-28069834

RESUMEN

The bipolar kinesin-5 Cin8 switches from minus- to plus-end-directed motility under various conditions in vitro The mechanism and physiological significance of this switch remain unknown. Here, we show that under high ionic strength conditions, Cin8 moves towards and concentrates in clusters at the minus ends of stable and dynamic microtubules. Clustering of Cin8 induces a switch from fast minus- to slow plus-end-directed motility and forms sites that capture antiparallel microtubules (MTs) and induces their sliding apart through plus-end-directed motility. In early mitotic cells with monopolar spindles, Cin8 localizes near the spindle poles at microtubule minus ends. This localization is dependent on the minus-end-directed motility of Cin8. In cells with assembled bipolar spindles, Cin8 is distributed along the spindle microtubules. We propose that minus-end-directed motility is required for Cin8 clustering near the spindle poles before spindle assembly. Cin8 clusters promote the capture of microtubules emanating from the neighboring spindle poles and mediate their antiparallel sliding. This activity is essential to maximize microtubule crosslinking before bipolar spindle assembly and to induce the initial separation of the spindle poles.


Asunto(s)
Cinesinas/metabolismo , Mitosis , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Microtúbulos/metabolismo , Modelos Biológicos , Movimiento , Cuerpos Polares del Huso/metabolismo
4.
Cell Mol Life Sci ; 75(10): 1757-1771, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29397398

RESUMEN

Mitotic kinesin-5 bipolar motor proteins perform essential functions in mitotic spindle dynamics by crosslinking and sliding antiparallel microtubules (MTs) apart within the mitotic spindle. Two recent studies have indicated that single molecules of Cin8, the Saccharomyces cerevisiae kinesin-5 homolog, are minus end-directed when moving on single MTs, yet switch directionality under certain experimental conditions (Gerson-Gurwitz et al., EMBO J 30:4942-4954, 2011; Roostalu et al., Science 332:94-99, 2011). This finding was unexpected since the Cin8 catalytic motor domain is located at the N-terminus of the protein, and such kinesins have been previously thought to be exclusively plus end-directed. In addition, the essential intracellular functions of kinesin-5 motors in separating spindle poles during mitosis can only be accomplished by plus end-directed motility during antiparallel sliding of the spindle MTs. Thus, the mechanism and possible physiological role of the minus end-directed motility of kinesin-5 motors remain unclear. Experimental and theoretical studies from several laboratories in recent years have identified additional kinesin-5 motors that are bidirectional, revealed structural determinants that regulate directionality, examined the possible mechanisms involved and have proposed physiological roles for the minus end-directed motility of kinesin-5 motors. Here, we summarize our current understanding of the remarkable ability of certain kinesin-5 motors to switch directionality when moving along MTs.


Asunto(s)
Cinesinas/química , Cinesinas/fisiología , Proteínas Motoras Moleculares/química , Proteínas Motoras Moleculares/fisiología , Movimiento/fisiología , Animales , Humanos , Multimerización de Proteína , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/fisiología
6.
bioRxiv ; 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38405852

RESUMEN

Microtubule polarity and dynamic polymerization originate from the self-association properties of the a-tubulin heterodimer. For decades, it has remained poorly understood how the tubulin cofactors, TBCD, TBCE, TBCC, and the Arl2 GTPase mediate a-tubulin biogenesis from α- and ß-tubulins. Here, we use cryogenic electron microscopy to determine structures of tubulin cofactors bound to αß-tubulin. These structures show that TBCD, TBCE, and Arl2 form a heterotrimeric cage-like TBC-DEG assembly around the a-tubulin heterodimer. TBCD wraps around Arl2 and almost entirely encircles -tubulin, while TBCE forms a lever arm that anchors along the other end of TBCD and rotates α-tubulin. Structures of the TBC-DEG-αß-tubulin assemblies bound to TBCC reveal the clockwise rotation of the TBCE lever that twists a-tubulin by pulling its C-terminal tail while TBCD holds -tubulin in place. Altogether, these structures uncover transition states in αß-tubulin biogenesis, suggesting a vise-like mechanism for the GTP-hydrolysis dependent a-tubulin biogenesis mediated by TBC-DEG and TBCC. These structures provide the first evidence of the critical functions of the tubulin cofactors as enzymes that regulate the invariant organization of αß-tubulin, by catalyzing α- and ß-tubulin assembly, disassembly, and subunit exchange which are crucial for regulating the polymerization capacities of αß-tubulins into microtubules.

7.
Mol Biol Cell ; 34(11): ar111, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37610838

RESUMEN

Kinesin-5 crosslinks and slides apart microtubules to assemble, elongate, and maintain the mitotic spindle. Kinesin-5 is a tetramer, where two N-terminal motor domains are positioned at each end of the motor, and the coiled-coil stalk domains are organized into a tetrameric bundle through the bipolar assembly (BASS) domain. To dissect the function of the individual structural elements of the motor, we constructed a minimal kinesin-5 tetramer (mini-tetramer). We determined the x-ray structure of the extended, 34-nm BASS domain. Guided by these structural studies, we generated active bipolar kinesin-5 mini-tetramer motors from Drosophila melanogastor and human orthologues which are half the length of native kinesin-5. We then used these kinesin-5 mini-tetramers to examine the role of two unique structural adaptations of kinesin-5: 1) the length and flexibility of the tetramer, and 2) the C-terminal tails which interact with the motor domains to coordinate their ATPase activity. The C-terminal domain causes frequent pausing and clustering of kinesin-5. By comparing microtubule crosslinking and sliding by mini-tetramer and full-length kinesin-5, we find that both the length and flexibility of kinesin-5 and the C-terminal tails govern its ability to crosslink microtubules. Once crosslinked, stiffer mini-tetramers slide antiparallel microtubules more efficiently than full-length motors.


Asunto(s)
Cinesinas , Microtúbulos , Humanos , Animales , Huso Acromático , Análisis por Conglomerados , Drosophila
8.
Nat Struct Mol Biol ; 14(1): 54-9, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17195848

RESUMEN

Kinetochores are multicomponent assemblies that connect chromosomal centromeres to mitotic-spindle microtubules. The Ndc80 complex is an essential core element of kinetochores, conserved from yeast to humans. It is a rod-like assembly of four proteins- Ndc80p (HEC1 in humans), Nuf2p, Spc24p and Spc25p. We describe here the crystal structure of the most conserved region of HEC1, which lies at one end of the rod and near the N terminus of the polypeptide chain. It folds into a calponin-homology domain, resembling the microtubule-binding domain of the plus-end-associated protein EB1. We show that an Ndc80p-Nuf2p heterodimer binds microtubules in vitro. The less conserved, N-terminal segment of Ndc80p contributes to the interaction and may be a crucial regulatory element. We propose that the Ndc80 complex forms a direct link between kinetochore core components and spindle microtubules.


Asunto(s)
Cinetocoros/metabolismo , Microtúbulos/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Aurora Quinasas , Proteínas de Ciclo Celular , Cristalografía por Rayos X , Proteínas del Citoesqueleto , Dimerización , Humanos , Microtúbulos/ultraestructura , Modelos Moleculares , Datos de Secuencia Molecular , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Proteínas Nucleares/genética , Conformación Proteica , Proteínas Serina-Treonina Quinasas/metabolismo , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Alineación de Secuencia , Huso Acromático
9.
J Cell Biol ; 172(7): 1009-22, 2006 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-16567500

RESUMEN

Stu2p from budding yeast belongs to the conserved Dis1/XMAP215 family of microtubule-associated proteins (MAPs). The common feature of proteins in this family is the presence of HEAT repeat-containing TOG domains near the NH2 terminus. We have investigated the functions of the two TOG domains of Stu2p in vivo and in vitro. Our data suggest that Stu2p regulates microtubule dynamics through two separate activities. First, Stu2p binds to a single free tubulin heterodimer through its first TOG domain. A large conformational transition in homodimeric Stu2p from an open structure to a closed one accompanies the capture of a single free tubulin heterodimer. Second, Stu2p has the capacity to associate directly with microtubule ends, at least in part, through its second TOG domain. These two properties lead to the stabilization of microtubules in vivo, perhaps by the loading of tubulin dimers at microtubule ends. We suggest that this mechanism of microtubule regulation is a conserved feature of the Dis1/XMAP215 family of MAPs.


Asunto(s)
Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Tubulina (Proteína)/metabolismo , Anafase/genética , Benomilo/farmacología , Centrifugación por Gradiente de Densidad , Dimerización , Microscopía Electrónica de Transmisión , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos/efectos de los fármacos , Microtúbulos/metabolismo , Modelos Biológicos , Peso Molecular , Complejos Multiproteicos/ultraestructura , Mutación , Paclitaxel/farmacología , Unión Proteica , Conformación Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Huso Acromático/genética , Huso Acromático/metabolismo
10.
Sci Adv ; 7(6)2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33547070

RESUMEN

Directed active motion of motor proteins is a vital process in virtually all eukaryotic cells. Nearly a decade ago, the discovery of directionality switching of mitotic kinesin-5 motors challenged the long-standing paradigm that individual kinesin motors are characterized by an intrinsic directionality. The underlying mechanism, however, remains unexplained. Here, we studied clustering-induced directionality switching of the bidirectional kinesin-5 Cin8. Based on the characterization of single-molecule and cluster motility, we developed a model that predicts that directionality switching of Cin8 is caused by an asymmetric response of its active motion to opposing forces, referred to as drag. The model shows excellent quantitative agreement with experimental data obtained under high and low ionic strength conditions. Our analysis identifies a robust and general mechanism that explains why bidirectional motor proteins reverse direction in response to seemingly unrelated experimental factors including changes in motor density and molecular crowding, and in multimotor motility assays.

12.
Elife ; 92020 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-31958056

RESUMEN

Kinesin-5 motors organize mitotic spindles by sliding apart microtubules. They are homotetramers with dimeric motor and tail domains at both ends of a bipolar minifilament. Here, we describe a regulatory mechanism involving direct binding between tail and motor domains and its fundamental role in microtubule sliding. Kinesin-5 tails decrease microtubule-stimulated ATP-hydrolysis by specifically engaging motor domains in the nucleotide-free or ADP states. Cryo-EM reveals that tail binding stabilizes an open motor domain ATP-active site. Full-length motors undergo slow motility and cluster together along microtubules, while tail-deleted motors exhibit rapid motility without clustering. The tail is critical for motors to zipper together two microtubules by generating substantial sliding forces. The tail is essential for mitotic spindle localization, which becomes severely reduced in tail-deleted motors. Our studies suggest a revised microtubule-sliding model, in which kinesin-5 tails stabilize motor domains in the microtubule-bound state by slowing ATP-binding, resulting in high-force production at both homotetramer ends.


Asunto(s)
Cinesinas/metabolismo , Microtúbulos/metabolismo , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Microscopía por Crioelectrón , Humanos , Hidrólisis , Cinesinas/química , Cinesinas/ultraestructura , Cinética , Unión Proteica , Dominios Proteicos , Huso Acromático/metabolismo
13.
J Cell Biol ; 157(7): 1187-96, 2002 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-12082079

RESUMEN

MAP2 and tau exhibit microtubule-stabilizing activities that are implicated in the development and maintenance of neuronal axons and dendrites. The proteins share a homologous COOH-terminal domain, composed of three or four microtubule binding repeats separated by inter-repeats (IRs). To investigate how MAP2 and tau stabilize microtubules, we calculated 3D maps of microtubules fully decorated with MAP2c or tau using cryo-EM and helical image analysis. Comparing these maps with an undecorated microtubule map revealed additional densities along protofilament ridges on the microtubule exterior, indicating that MAP2c and tau form an ordered structure when they bind microtubules. Localization of undecagold attached to the second IR of MAP2c showed that IRs also lie along the ridges, not between protofilaments. The densities attributable to the microtubule-associated proteins lie in close proximity to helices 11 and 12 and the COOH terminus of tubulin. Our data further suggest that the evolutionarily maintained differences observed in the repeat domain may be important for the specific targeting of different repeats to either alpha or beta tubulin. These results provide strong evidence suggesting that MAP2c and tau stabilize microtubules by binding along individual protofilaments, possibly by bridging the tubulin interfaces.


Asunto(s)
Citoesqueleto/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas tau/metabolismo , Animales , Sitios de Unión , Bovinos , Humanos , Imagenología Tridimensional , Ratones , Proteínas Asociadas a Microtúbulos/química , Microtúbulos/química , Microtúbulos/ultraestructura , Modelos Biológicos , Modelos Moleculares , Mutación , Unión Proteica , Estructura Terciaria de Proteína , Ratas , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Tubulina (Proteína)/química , Tubulina (Proteína)/aislamiento & purificación , Proteínas tau/química
14.
J Cell Biol ; 163(4): 743-53, 2003 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-14638858

RESUMEN

Caenhorhabditis elegans Unc104 kinesin transports synaptic vesicles at rapid velocities. Unc104 is primarily monomeric in solution, but recent motility studies suggest that it may dimerize when concentrated on membranes. Using cryo-electron microscopy, we observe two conformations of microtubule-bound Unc104: a monomeric state in which the two neck helices form an intramolecular, parallel coiled coil; and a dimeric state in which the neck helices form an intermolecular coiled coil. The intramolecular folded conformation is abolished by deletion of a flexible hinge separating the neck helices, indicating that it acts as a spacer to accommodate the parallel coiled-coil configuration. The neck hinge deletion mutation does not alter motor velocity in vitro but produces a severe uncoordinated phenotype in transgenic C. elegans, suggesting that the folded conformation plays an important role in motor regulation. We suggest that the Unc104 neck regulates motility by switching from a self-folded, repressed state to a dimerized conformation that can support fast processive movement.


Asunto(s)
Proteínas de Caenorhabditis elegans , Cinesinas/química , Proteínas Motoras Moleculares/química , Proteínas del Tejido Nervioso/química , Vesículas Sinápticas/metabolismo , Adenosina Difosfato/metabolismo , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Adenilil Imidodifosfato/farmacología , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans , Dominio Catalítico/fisiología , Dimerización , Cinesinas/genética , Cinesinas/ultraestructura , Modelos Moleculares , Proteínas Motoras Moleculares/genética , Datos de Secuencia Molecular , Trastornos del Movimiento/genética , Mutación/fisiología , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/ultraestructura , Nucleótidos/genética , Nucleótidos/metabolismo , Estructura Terciaria de Proteína/fisiología , Homología de Secuencia de Aminoácido , Vesículas Sinápticas/ultraestructura
15.
Structure ; 15(3): 355-62, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17355870

RESUMEN

Members of the XMAP215/Dis1 family of microtubule-associated proteins (MAPs) are essential for microtubule growth. MAPs in this family contain several 250 residue repeats, called TOG domains, which are thought to bind tubulin dimers and promote microtubule polymerization. We have determined the crystal structure of a single TOG domain from the Caenorhabditis elegans homolog, Zyg9, to 1.9 A resolution, and from it we describe a structural blueprint for TOG domains. These domains are flat, paddle-like structures, composed of six HEAT-repeat elements stacked side by side. The two wide faces of the paddle contain the HEAT-repeat helices, and the two narrow faces, the intra- and inter-HEAT repeat turns. Solvent-exposed residues in the intrarepeat turns are conserved, both within a particular protein and across the XMAP215/Dis1 family. Mutation of some of these residues in the TOG1 domain from the budding yeast homolog, Stu2p, shows that this face indeed participates in the tubulin contact.


Asunto(s)
Secuencia Conservada , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo , Proteínas de Xenopus/química , Proteínas de Xenopus/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia Conservada/genética , Cristalografía por Rayos X , Proteínas Asociadas a Microtúbulos/genética , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Unión Proteica/genética , Estructura Terciaria de Proteína/genética , Proteínas de Xenopus/genética , Xenopus laevis/genética
16.
Mol Biol Cell ; 30(12): 1490-1504, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30969896

RESUMEN

XMAP215/Stu2/Alp14 accelerates tubulin polymerization while processively tracking microtubule (MT) plus ends via tumor overexpressed gene (TOG) domain arrays. It remains poorly understood how these functions arise from tubulin recruitment, mediated by the distinct TOG1 and TOG2 domains, or the assembly of these arrays into large square complexes. Here, we describe a relationship between MT plus-end tracking and polymerase functions revealing their distinct origin within TOG arrays. We study Alp14 mutants designed based on structural models, with defects in either tubulin recruitment or self-organization. Using in vivo live imaging in fission yeast and in vitro MT dynamics assays, we show that tubulins recruited by TOG1 and TOG2 serve concerted, yet distinct, roles in MT plus-end tracking and polymerase functions. TOG1 is critical for processive plus-end tracking, whereas TOG2 is critical for accelerating tubulin polymerization. Inactivating interfaces that stabilize square complexes lead to defects in both processive MT plus-end tracking and polymerase. Our studies suggest that a dynamic cycle between square and unfurled TOG array states gives rise to processive polymerase activity at MT plus ends.


Asunto(s)
Microtúbulos/metabolismo , Schizosaccharomyces/metabolismo , Modelos Biológicos , Unión Proteica , Dominios Proteicos , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo
17.
Elife ; 72018 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-30422110

RESUMEN

XMAP215/Stu2/Alp14 proteins accelerate microtubule plus-end polymerization by recruiting tubulins via arrays of tumor overexpressed gene (TOG) domains, yet their mechanism remains unknown. Here, we describe the biochemical and structural basis for TOG arrays in recruiting and polymerizing tubulins. Alp14 binds four tubulins via dimeric TOG1-TOG2 subunits, in which each domain exhibits a distinct exchange rate for tubulin. X-ray structures revealed square-shaped assemblies composed of pseudo-dimeric TOG1-TOG2 subunits assembled head-to-tail, positioning four unpolymerized tubulins in a polarized wheel-like configuration. Crosslinking and electron microscopy show Alp14-tubulin forms square assemblies in solution, and inactivating their interfaces destabilize this organization without influencing tubulin binding. An X-ray structure determined using approach to modulate tubulin polymerization revealed an unfurled assembly, in which TOG1-TOG2 uniquely bind to two polymerized tubulins. Our findings suggest a new microtubule polymerase model in which TOG arrays recruit tubulins by forming square assemblies that then unfurl, facilitating their concerted polymerization into protofilaments.


Asunto(s)
Proteínas Fúngicas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Multimerización de Proteína , Tubulina (Proteína)/metabolismo , Cristalografía por Rayos X , Proteínas Fúngicas/química , Hongos/metabolismo , Microscopía Electrónica , Proteínas Asociadas a Microtúbulos/química , Microtúbulos/química , Modelos Moleculares , Unión Proteica , Conformación Proteica , Tubulina (Proteína)/química
18.
Curr Biol ; 14(5): 363-71, 2004 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-15028210

RESUMEN

BACKGROUND: MAP2 and tau are abundant microtubule-associated proteins (MAPs) in neurons. The development of neuronal dendrites and axons requires a dynamic interaction between microtubules and actin filaments. MAPs represent good candidates to mediate such interactions. Although MAP2c and tau have similar, well-characterized microtubule binding activities, their actin interaction is poorly understood. RESULTS: Here, we show by using a cosedimentation assay that MAP2c binds F-actin. Upon actin binding, MAP2c organizes F-actin into closely packed actin bundles. Moreover, we show by using a deletion approach that MAP2c's microtubule binding domain (MTBD) is both necessary and sufficient for both F-actin binding and bundling activities. Surprisingly, even though the MAP2 and tau MTBDs share high sequence homology and possess similar microtubule binding activities, tau is unable to bind or bundle F-actin. Furthermore, experiments with chimeric proteins demonstrate that the actin binding activity fully correlates with the ability to promote neurite initiation in neuroblastoma cells. CONCLUSIONS: These results provide the first demonstration that the MAP2c and tau MTBD domains exhibit distinct properties, diverging in actin binding and neurite initiation activities. These results implicate a novel actin function for MAP2c in neuronal morphogenesis and furthermore suggest that actin interactions could contribute to functional differences between MAP2 and tau in neurons.


Asunto(s)
Actinas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Neuronas/metabolismo , Proteínas tau/metabolismo , Animales , Sitios de Unión/fisiología , Células Cultivadas , Centrifugación , Cartilla de ADN , Electroforesis en Gel de Poliacrilamida , Inmunohistoquímica , Microscopía Electrónica , Microtúbulos/ultraestructura , Morfogénesis/fisiología , Neuronas/fisiología , Proteínas Recombinantes de Fusión/metabolismo
19.
J Mol Biol ; 363(2): 558-76, 2006 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-16970964

RESUMEN

To infect and replicate, bacteriophage P22 injects its 43 kbp genome across the cell wall of Salmonella enterica serovar Typhimurium. The attachment of phage P22 to the host cell as well as the injection of the viral DNA into the host is mediated by the virion's tail complex. This 2.8 MDa molecular machine is formed by five proteins, which include the portal protein gp1, the adhesion tailspike protein gp9, and three tail accessory factors: gp4, gp10, gp26. We have isolated the tail accessory factor gp4 and characterized its structure and binding interactions with portal protein. Interestingly, gp4 exists in solution as a monomer, which displays an exceedingly low structural stability (Tm 34 degrees C). Unfolded gp4 is prone to aggregation within a narrow range of temperatures both in vitro and in Salmonella extracts. In the virion the thermal unfolding of gp4 is prevented by the interaction with the dodecameric portal protein, which stabilizes the structure of gp4 and suppresses unfolded gp4 from irreversibly aggregating in the Salmonella milieu. The structural stabilization of gp4 is accompanied by the concomitant oligomerization of the protein to form a ring of 12 subunits bound to the lower end of the portal ring. The interaction of gp4 with portal protein is complex and likely involves the distinct binding of two non-equivalent sets of six gp4 proteins. Binding of the first set of six gp4 equivalents to dodecameric portal protein yields a gp(1)12:gp(4)6 assembly intermediate, which is stably populated at 30 degrees C and can be resolved by native gel electrophoresis. The final product of the assembly reaction is a bi-dodecameric gp(1)12:gp(4)12 complex, which appears hollow by electron microscopy, suggesting that gp4 does not physically plug the DNA entry/exit channel, but acts as a structural adaptor for the other tail accessory factors: gp10 and gp26.


Asunto(s)
Bacteriófago P22/metabolismo , Conformación Proteica , Salmonella typhimurium/virología , Proteínas de la Cola de los Virus/química , Proteínas de la Cola de los Virus/metabolismo , Bacteriófago P22/química , Sitios de Unión , Modelos Moleculares , Unión Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Temperatura , Factores de Tiempo , Proteínas de la Cola de los Virus/genética , Proteínas de la Cola de los Virus/ultraestructura
20.
Mol Biol Cell ; 28(3): 359-363, 2017 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-28137948

RESUMEN

Soluble αß-tubulin heterodimers are maintained at high concentration inside eukaryotic cells, forming pools that fundamentally drive microtubule dynamics. Five conserved tubulin cofactors and ADP ribosylation factor-like 2 regulate the biogenesis and degradation of αß-tubulins to maintain concentrated soluble pools. Here I describe a revised model for the function of three tubulin cofactors and Arl2 as a multisubunit GTP-hydrolyzing catalytic chaperone that cycles to promote αß-tubulin biogenesis and degradation. This model helps explain old and new data indicating these activities enhance microtubule dynamics in vivo via repair or removal of αß-tubulins from the soluble pools.


Asunto(s)
Proteínas de Unión al GTP/metabolismo , Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo , Factores de Ribosilacion-ADP/metabolismo , Factores de Ribosilacion-ADP/fisiología , Dimerización , Homeostasis , Humanos , Proteínas Asociadas a Microtúbulos/metabolismo , Modelos Moleculares , Chaperonas Moleculares/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA