Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Immunol ; 191(5): 2796-805, 2013 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-23872050

RESUMEN

Significant immunological obstacles are to be negotiated before xenotransplantation becomes a clinical reality. An initial rejection of transplanted vascularized xenograft is attributed to Galα1,3Galß1,4GlcNAc-R (Galα1,3-Gal)-dependent and -independent mechanisms. Hitherto, no receptor molecule has been identified that could account for Galα1,3-Gal-independent rejection. In this study, we identify the tetraspanin CD82 as a receptor molecule for the Galα1,3-Gal-independent mechanism. We demonstrate that, in contrast to human undifferentiated myeloid cell lines, differentiated cell lines are capable of recognizing xenogeneic porcine aortic endothelial cells in a calcium-dependent manner. Transcriptome-wide analysis to identify the differentially expressed transcripts in these cells revealed that the most likely candidate of the Galα1,3-Gal-independent recognition moiety is the tetraspanin CD82. Abs to CD82 inhibited the calcium response and the subsequent activation invoked by xenogeneic encounter. Our data identify CD82 on innate immune cells as a major "xenogenicity sensor" and open new avenues of intervention to making xenotransplantation a clinical reality.


Asunto(s)
Rechazo de Injerto/inmunología , Proteína Kangai-1/inmunología , Trasplante Heterólogo/inmunología , Animales , Western Blotting , Células Endoteliales/inmunología , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Humanos , Microscopía Confocal , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Porcinos
2.
Bioengineering (Basel) ; 9(4)2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35447709

RESUMEN

Compared to cell therapy, where cells are injected into a defect region, the treatment of heart infarction with cells seeded in a vascularized scaffold bears advantages, such as an immediate nutrient supply or a controllable and persistent localization of cells. For this purpose, decellularized native tissues are a preferable choice as they provide an in vivo-like microenvironment. However, the quality of such scaffolds strongly depends on the decellularization process. Therefore, two protocols based on sodium dodecyl sulfate or sodium deoxycholate were tailored and optimized for the decellularization of a porcine heart. The obtained scaffolds were tested for their applicability to generate vascularized cardiac patches. Decellularization with sodium dodecyl sulfate was found to be more suitable and resulted in scaffolds with a low amount of DNA, a highly preserved extracellular matrix composition, and structure shown by GAG quantification and immunohistochemistry. After seeding human endothelial cells into the vasculature, a coagulation assay demonstrated the functionality of the endothelial cells to minimize the clotting of blood. Human-induced pluripotent-stem-cell-derived cardiomyocytes in co-culture with fibroblasts and mesenchymal stem cells transferred the scaffold into a vascularized cardiac patch spontaneously contracting with a frequency of 25.61 ± 5.99 beats/min for over 16 weeks. The customized decellularization protocol based on sodium dodecyl sulfate renders a step towards a preclinical evaluation of the scaffolds.

3.
J Biomed Mater Res B Appl Biomater ; 110(3): 691-701, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34619017

RESUMEN

The limited availability of human donor organs suitable for transplantation has resulted in ever-increasing patient waiting lists globally. Xenotransplantation is considered a potential option, but is yet to reach clinical practice. Although remarkable progress has been made in overcoming immunological rejection, issues with functionality are still to be resolved. Bioengineering approaches have been used to create cardiac tissues with optimized functions. The use of decellularized xenogeneic cardiac tissues seeded with donor-derived cardiac cells may prove to be a viable strategy as supporting structures of the native tissue such as vasculature can be utilized. Here we used sequential perfusion to decellularize adult rat hearts. The acellular scaffolds were reseeded with human endothelial cells, human fibroblasts, human mesenchymal stem cells, and cardiac cells derived from human-induced pluripotent stem cells. The ability of the resultant recellularized rat scaffolds to activate human naïve neutrophils in vitro was investigated to measure xenogeneic recognition. Our results demonstrate that in contrast to cadaveric xenogeneic hearts, acellular and recellularized xenogeneic scaffolds did not activate human naïve neutrophils and suggest that decellularization removes the xenogeneic antigens that lead to human naïve neutrophil activation thus allowing human cells to populate the now "allogenized" xenogeneic scaffolds.


Asunto(s)
Células Madre Pluripotentes Inducidas , Animales , Células Endoteliales , Matriz Extracelular/química , Xenoinjertos , Humanos , Neutrófilos , Ratas , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Trasplante Heterólogo
4.
Int J Cardiol ; 186: 77-89, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25814349

RESUMEN

BACKGROUND: The molecular mechanisms underlying the geometrical changes of the left ventricle during the progression to heart failure and recovery are not well defined. OBJECTIVE: Here we investigate the involvement of matrixins and cardiokines in an ovine model of pressure-induced left ventricular failure (LVF). METHODS: Fifteen sheep underwent supracoronary aortic banding with an inflatable cuff. A controlled and progressive increase of LV pressure was monitored echocardiographically. Endomyocardial biopsies were collected throughout the development of LVF and subsequent recovery after pressure unloading. RESULTS: Thirteen sheep developed LVF with a subsequent recovery. Peak left ventricular hypertrophy (LVH) and dilatation (LVD) occurred at 31.5 ± 1.6 weeks and 102.7 ± 2.2 weeks post-banding respectively, with an increase in LV internal diameter in diastole (LVIDd 5.11 ± 0.12 compared to the control 3.37 ± 0.07 cm, p<0.001), with preserved LV ejection fraction (LVEF). Reduced LVEF became evident 116.5 ± 2.7 weeks post-banding. Clinical and echocardiographic improvements were observed following deflation of the aortic banding cuff. By 138.1 ± 3.1 weeks cardiac performance recovered with restoration of LVEF. Significant changes in the expression of matrix metalloproteinases (MMP)-1, -2, -3, vascular endothelial cell growth factor (VEGF), fibroblast growth factor (FGF)-2, interferon (INF)-α-2 and soluble CD40 ligand (sCD40L) were observed throughout the progression to failure and recovery. CONCLUSIONS: We used an ovine model to study reversible LV remodelling without interruption and found significant changes in matrixin and cardiokine expression during LV progression to failure and recovery.


Asunto(s)
Citocinas/genética , Regulación de la Expresión Génica , Insuficiencia Cardíaca/genética , Metaloproteinasas de la Matriz/genética , ARN/genética , Recuperación de la Función/fisiología , Remodelación Ventricular , Animales , Citocinas/biosíntesis , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/fisiopatología , Immunoblotting , Metaloproteinasas de la Matriz/biosíntesis , Reacción en Cadena en Tiempo Real de la Polimerasa , Ovinos , Oveja Doméstica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA