Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
JIMD Rep ; 28: 127-135, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26589311

RESUMEN

This study reports on the inborn errors of metabolism (IEM) detected by our national newborn screening between 2011 and 2014. One hundred fourteen patients (55 UAE citizens and 59 residents) were diagnosed during this period. The program was most comprehensive (tested 29 IEM) and universally applied in 2013, giving an incidence of 1 in 1,787 citizens. This relatively high prevalence resulted from the frequent consanguineous marriages (81.5%) among affected families. The following eight disorders accounted for 80% of the entities: biotinidase deficiency (14 of 55), phenylketonuria (11 of 55), 3-methylcrotonyl glycinuria (9 of 55), medium-chain acyl-CoA dehydrogenase deficiency (4 of 55), argininosuccinic aciduria, glutaric aciduria type 1, glutaric aciduria type 2, and methylmalonyl-CoA mutase deficiency (2 of 55 each). Mutation analysis was performed in 48 (87%) of the 55 patients, and 33 distinct mutations were identified. Twenty-nine (88%) mutations were clinically significant and, thus, could be included in our premarital screening. Most mutations were homozygous, except for the biotinidase deficiency. The BTD mutations c.1207T>G (found in citizens) and c.424C>A (found in Somalians) were associated with undetectable biotinidase activity. Thus, the high prevalence of IEM in our region is amenable to newborn and premarital screening, which is expected to halt most of these diseases.

2.
Orphanet J Rare Dis ; 11(1): 94, 2016 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-27391121

RESUMEN

BACKGROUND: This study reports on the use of whole exome sequencing (WES) to diagnose children with inborn errors of metabolism and other disorders in United Arab Emirates. METHODS: From January 2012 to December 2014, 85 patients (46 % females) were seen in the metabolic center at Tawam Hospital (Abu Dhabi) and WES testing was requested because definitive diagnoses were not reached by conventional methods. RESULTS: Eighty (93 %) patients were <18 years old and 44 (52 %) were <5 years. Sixty-eight (80 %) patients had neurologic abnormalities. WES facilitated rapid diagnosis in 50 % of the patients, especially those with mitochondrial disorders. Yet, in most cases extensive investigation was required after the results were available. Most patients with confirmed molecular diagnoses had autosomal recessive disorders and were homozygous for the rare alleles. Most patients with autosomal dominant disorders and all patients with X-linked disorders had de novo mutations. WES results were negative (no pathogenic variants related to patient phenotype were identified) in six patients and incorrect in two patients. One patient had a reported "deleterious" hemizygous mutation in SLC35A2, c.617_620del (p.Q206fs), suggesting 'congenital disorder of glycosylation, TYPE IIm', but glycosylation studies were normal and healthy brothers had the same mutation. Another patient had "pathogenic" mutation in MCCC2, c.1015G > A (p.V339M), but urine organic acids was normal. WES confirmed inborn errors of metabolism (five mitochondrial diseases, three lysosomal storage diseases, and six other disorders) in 14 patients and genetic disorders (14 neurological diseases and three non-neurological diseases) in 17 patients. Variants of unknown significance were identified in 48 patients; 12 had "confirmed pathologic variants"and 12 had "likely pathologic variants", based on consistent phenotypes, biochemical/ segregation studies, or reported pathogenicity. In 24 patients, the variants were inconsistent with phenotypes or biochemical/ familial studies. CONCLUSIONS: Although WES provided molecular diagnoses, the results required careful interpretations and many patients required additional investigations. This tool is useful when conventional diagnostic methods fail. Staff competence in obtaining consent/ permission, interpreting the findings, and providing the proper counseling are essential before incorporating this technology into routine clinical practices.


Asunto(s)
Errores Innatos del Metabolismo/diagnóstico , Enfermedades Mitocondriales/diagnóstico , Análisis de Secuencia de ADN/métodos , Exoma/genética , Femenino , Pruebas Genéticas , Humanos , Masculino , Errores Innatos del Metabolismo/genética , Mitocondrias/genética , Enfermedades Mitocondriales/genética , Mutación/genética , Fenotipo , Emiratos Árabes Unidos
3.
JIMD Rep ; 10: 1-9, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23430803

RESUMEN

Lysosomal storage disorders (LSD) are rare entities of recessive inheritance. The presence of a "founder" mutation in isolated communities with a high degree of consanguinity (e.g., tribes in the Middle East North Africa, MENA, region) is expected to lead to unusually high disease prevalence. The primary aim of this study was to estimate the prevalence of LSD and report their mutation spectrum in UAE. Between 1995 and 2010, 119 patients were diagnosed with LSD (65 Emiratis and 54 non-Emiratis). Genotyping was performed in 59 (50 %) patients (39 Emirati from 17 families and 20 non-Emiratis from 17 families). The prevalence of LSD in Emiratis was 26.9/100,000 live births. Sphingolipidoses were relatively common (9.8/100,000), with GM1-gangliosidosis being the most prevalent (4.7/100,000). Of the Mucopolysaccharidoses VI, IVA and IIIB were the predominant subtypes (5.5/100,000). Compared to Western countries, the prevalence of fucosidosis, Batten disease, and α-mannosidosis was 40-, sevenfold, and fourfold higher in UAE, respectively. The prevalence of Pompe disease (2.7/100,000) was similar to The Netherlands, but only the infantile subtype was found in UAE. Sixteen distinct LSD mutations were identified in 39 Emirati patients. Eight (50 %) mutations were reported only in Emirati, of which three were novel [c.1694G>T in the NAGLU gene, c.1336 C>T in the GLB1 gene, and homozygous deletions in the CLN3 gene]. Twenty-seven (42 %) patients were clustered in five of the 70 Emirati tribes. These findings highlight the need for tribal-based premarital testing and genetic counseling.

4.
Genet Test Mol Biomarkers ; 16(5): 366-71, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22106832

RESUMEN

Inborn errors of metabolism (IEM) are frequently encountered by physicians in the United Arab Emirates (UAE). However, the mutations underlying a large number of these disorders have not yet been determined. Therefore, the objective of this study was to identify the mutations underlying a number of IEM disorders among UAE residents from both national and expatriate families. A case series of patients from 34 families attending the metabolic clinic at Tawam Hospital were clinically evaluated, and molecular testing was carried out to determine their causative mutations. The mutation analysis was carried out at molecular genetics diagnostic laboratories. Thirty-eight mutations have been identified as responsible for twenty IEM disorders, including in the metabolism of amino acids, lipids, steroids, metal transport and mitochondrial energy metabolism, and lysosomal storage disorders. Nine of the identified mutations are novel, including two missense mutations, three premature stop codons and four splice site mutations. Mutation analysis of IEM disorders in the UAE population has an important impact on molecular diagnosis and genetic counseling for families affected by these disorders.


Asunto(s)
Errores Innatos del Metabolismo/epidemiología , Errores Innatos del Metabolismo/genética , Mutación/genética , Análisis Mutacional de ADN , Familia , Pruebas Genéticas , Genética de Población , Humanos , Emiratos Árabes Unidos/epidemiología
5.
Eur J Med Genet ; 55(12): 671-6, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22960500

RESUMEN

Isovaleric acidemia (IVA) is an autosomal recessive inborn error of leucine metabolism caused by deficiency of mitochondrial isovaleryl-CoA dehydrogenase (IVD). Accumulation of isovaleryl-CoA derivatives to toxic levels results in clinical symptoms of the disease. Here, we investigate the clinical and molecular features of Arab patients with IVA. Patients from five unrelated families were evaluated clinically and for defects in the IVD gene. Four novel mutations (p.F382fs, p.R392H, p.R395Q and p.E408K) have been identified with p.R395Q occurring in two families. In addition, molecular modeling of the identified missense mutations predicted their damaging effects on the protein and computational analysis of the p.F382fs mutation predicted the disruption of a 3' splicing site resulting in inactive or unstable gene product. Furthermore, we found an unusual case of a 17 years old female homozygous for the p.R392H mutation with no clinical symptoms. Our results illustrate a heterogeneous mutation spectrum and clinical presentation in the relatively small UAE population.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos/diagnóstico , Errores Innatos del Metabolismo de los Aminoácidos/genética , Isovaleril-CoA Deshidrogenasa/genética , Mutación , Fenotipo , Adolescente , Niño , Preescolar , Consanguinidad , Exones , Femenino , Humanos , Enlace de Hidrógeno , Isovaleril-CoA Deshidrogenasa/química , Isovaleril-CoA Deshidrogenasa/deficiencia , Masculino , Modelos Moleculares , Linaje , Conformación Proteica , Sitios de Empalme de ARN , Emiratos Árabes Unidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA