RESUMEN
Biallelic changes in the ZNFX1 gene have been recently reported to cause severe familial immunodeficiency. Through a search of our bio/databank with information from genetic testing of >55 000 individuals, we identified nine additional patients from seven families with six novel homozygous ZNFX1 variants. Consistent with the previously described phenotype, our patients suffered from monocytosis, thrombocytopenia, hepatosplenomegaly, recurrent infections, and lymphadenopathy. The two most severely affected probands also had renal involvement and clinical presentations compatible with hemophagocytic lymphohistiocytosis. The disease was less lethal among our patients than previously reported. We identified two missense changes, two variants predicted to result in complete protein loss through nonsense-mediated decay, and two frameshift changes that likely introduce a truncation. Our findings (i) independently confirm the role of ZNFX1 in primary genetic immunodeficiency, (ii) expand the genetic and clinical spectrum of ZNFX1-related disease, and (iii) illustrate the utility of large, well-curated, and continually updated genotype-phenotype databases in resolving molecular diagnoses of patients with initially negative genetic testing findings.
Asunto(s)
Alelos , Antígenos de Neoplasias/genética , Enfermedades Hematológicas/diagnóstico , Enfermedades Hematológicas/genética , Mutación , Enfermedades de Inmunodeficiencia Primaria/diagnóstico , Enfermedades de Inmunodeficiencia Primaria/genética , Mapeo Cromosómico , Biología Computacional/métodos , Análisis Mutacional de ADN , Bases de Datos Genéticas , Facies , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Homocigoto , Humanos , Linaje , FenotipoRESUMEN
PURPOSE: Proline Rich 12 (PRR12) is a gene of unknown function with suspected DNA-binding activity, expressed in developing mice and human brains. Predicted loss-of-function variants in this gene are extremely rare, indicating high intolerance of haploinsufficiency. METHODS: Three individuals with intellectual disability and iris anomalies and truncating de novo PRR12 variants were described previously. We add 21 individuals with similar PRR12 variants identified via matchmaking platforms, bringing the total number to 24. RESULTS: We observed 12 frameshift, 6 nonsense, 1 splice-site, and 2 missense variants and one patient with a gross deletion involving PRR12. Three individuals had additional genetic findings, possibly confounding the phenotype. All patients had developmental impairment. Variable structural eye defects were observed in 12/24 individuals (50%) including anophthalmia, microphthalmia, colobomas, optic nerve and iris abnormalities. Additional common features included hypotonia (61%), heart defects (52%), growth failure (54%), and kidney anomalies (35%). PrediXcan analysis showed that phecodes most strongly associated with reduced predicted PRR12 expression were enriched for eye- (7/30) and kidney- (4/30) phenotypes, such as wet macular degeneration and chronic kidney disease. CONCLUSION: These findings support PRR12 haploinsufficiency as a cause for a novel disorder with a wide clinical spectrum marked chiefly by neurodevelopmental and eye abnormalities.
Asunto(s)
Haploinsuficiencia , Discapacidad Intelectual , Animales , Haploinsuficiencia/genética , Humanos , Discapacidad Intelectual/genética , Ratones , Hipotonía Muscular , Mutación Missense , FenotipoRESUMEN
Synaptotagmin 1 (SYT1) is a critical mediator of fast, synchronous, calcium-dependent neurotransmitter release and also modulates synaptic vesicle endocytosis. This paper describes 11 patients with de novo heterozygous missense mutations in SYT1. All mutations alter highly conserved residues, and cluster in two regions of the SYT1 C2B domain at positions Met303 (M303K), Asp304 (D304G), Asp366 (D366E), Ile368 (I368T) and Asn371 (N371K). Phenotypic features include infantile hypotonia, congenital ophthalmic abnormalities, childhood-onset hyperkinetic movement disorders, motor stereotypies, and developmental delay varying in severity from moderate to profound. Behavioural characteristics include sleep disturbance and episodic agitation. Absence of epileptic seizures and normal orbitofrontal head circumference are important negative features. Structural MRI is unremarkable but EEG disturbance is universal, characterized by intermittent low frequency high amplitude oscillations. The functional impact of these five de novo SYT1 mutations has been assessed by expressing rat SYT1 protein containing the equivalent human variants in wild-type mouse primary hippocampal cultures. All mutant forms of SYT1 were expressed at levels approximately equal to endogenous wild-type protein, and correctly localized to nerve terminals at rest, except for SYT1M303K, which was expressed at a lower level and failed to localize at nerve terminals. Following stimulation, SYT1I368T and SYT1N371K relocalized to nerve terminals at least as efficiently as wild-type SYT1. However, SYT1D304G and SYT1D366E failed to relocalize to nerve terminals following stimulation, indicative of impairments in endocytic retrieval and trafficking of SYT1. In addition, the presence of SYT1 variants at nerve terminals induced a slowing of exocytic rate following sustained action potential stimulation. The extent of disturbance to synaptic vesicle kinetics is mirrored by the severity of the affected individuals' phenotypes, suggesting that the efficiency of SYT1-mediated neurotransmitter release is critical to cognitive development. In summary, de novo dominant SYT1 missense mutations are associated with a recognizable neurodevelopmental syndrome, and further cases can now be diagnosed based on clinical features, electrophysiological signature and mutation characteristics. Variation in phenotype severity may reflect mutation-specific impact on the diverse physiological functions of SYT1.
Asunto(s)
Sinaptotagmina I/genética , Sinaptotagmina I/fisiología , Potenciales de Acción , Adolescente , Animales , Calcio/metabolismo , Niño , Preescolar , Fenómenos Electrofisiológicos , Endocitosis , Femenino , Humanos , Discapacidad Intelectual/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Trastornos del Movimiento/genética , Mutación Missense/genética , Trastornos del Neurodesarrollo/metabolismo , Neuronas/metabolismo , Ratas , Transmisión Sináptica , Vesículas Sinápticas/genética , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/fisiología , Adulto JovenRESUMEN
mRNA decay is an essential and active process that allows cells to continuously adapt gene expression to internal and environmental cues. There are two mRNA degradation pathways: 3' to 5' and 5' to 3'. The DCPS protein is the scavenger mRNA decapping enzyme which functions in the last step of the 3' end mRNA decay pathway. We have identified a DCPS pathogenic mutation in a large family with three affected individuals presenting with a novel recessive syndrome consisting of craniofacial anomalies, intellectual disability and neuromuscular defects. Using patient's primary cells, we show that this homozygous splice mutation results in a DCPS loss-of-function allele. Diagnostic biochemical analyses using various m7G cap derivatives as substrates reveal no DCPS enzymatic activity in patient's cells. Our results implicate DCPS and more generally RNA catabolism, as a critical cellular process for neurological development, normal cognition and organismal homeostasis in humans.
Asunto(s)
Anomalías Múltiples/genética , Endorribonucleasas/genética , Discapacidad Intelectual/genética , Hipotonía Muscular/genética , Células Cultivadas , Niño , Preescolar , Consanguinidad , Análisis Mutacional de ADN , Endorribonucleasas/deficiencia , Estudios de Asociación Genética , Humanos , Masculino , Linaje , Sitios de Empalme de ARN , SíndromeRESUMEN
Background and aim Becker muscular dystrophy (BMD) is an X-linked disease caused by an in-frame mutation in the dystrophin gene, which is considered an allelic disorder to the most severe form of dystrophinopahies, Duchenne muscular dystrophy, which leads to skeletal and cardiac muscle involvement and results in dilated cardiomyopathy (DCM). The aim of this study is to present our ECG data and the significance of this data in the early detection of DCM in these patients. Methods This is a retrospective study. All patients known to the clinical Genetic Clinic and Queen Alia Heart Center in Jordan with a diagnosis of Becker muscular dystrophy from the year 2011-2022 are offered cardiac evaluation according to the guidelines, which included clinical assessment, electrocardiograph, and 2-D echocardiograph (echo) at the time of diagnosis and every five years thereafter once the initial assessment was normal. All the records were retrieved and analyzed. Results Fifty-three patients of all ages with genetically confirmed BMD were identified. Twelve had no record as they didn't attend any cardiac evaluation. Forty-one were under regular clinical follow-up. Two were excluded as they died, and another four had no recorded data in our center. Ultimately, 35 patients were included and studied. The mean age was 30.5 years ± 22.1, ranging from two to seventy-seven years of age. Twenty-seven (77%) had abnormal ECG. High voltage R wave in V2 and V1 was the most common finding, followed by repolarisation abnormalities and Q wave (43%, 17%, 13%, and 11% respectively). Incomplete right bundle branch block in 4% as well as R/S ratio >1.2. U wave abnormalities in 3% and sinus tachycardia were found in only one patient. Conclusion Cardiac surveillance for patients with Becker muscular dystrophy is mandatory after the age of 16. Q wave and repolarisation changes should be taken seriously as early signs of dilated cardiomyopathy, even if the echo is normal.
RESUMEN
Calcium/calmodulin-dependent protein kinase II (CAMK2) plays fundamental roles in synaptic plasticity that underlies learning and memory. Here, we describe a new recessive neurodevelopmental syndrome with global developmental delay, seizures and intellectual disability. Using linkage analysis and exome sequencing, we found that this disease maps to chromosome 5q31.1-q34 and is caused by a biallelic germline mutation in CAMK2A. The missense mutation, p.His477Tyr is located in the CAMK2A association domain that is critical for its function and localization. Biochemically, the p.His477Tyr mutant is defective in self-oligomerization and unable to assemble into the multimeric holoenzyme.In vivo, CAMK2AH477Y failed to rescue neuronal defects in C. elegans lacking unc-43, the ortholog of human CAMK2A. In vitro, neurons derived from patient iPSCs displayed profound synaptic defects. Together, our data demonstrate that a recessive germline mutation in CAMK2A leads to neurodevelopmental defects in humans and suggest that dysfunctional CAMK2 paralogs may contribute to other neurological disorders.
Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Discapacidades del Desarrollo/genética , Homocigoto , Discapacidad Intelectual/genética , Mutación con Pérdida de Función , Convulsiones/genética , Cromosomas Humanos Par 5 , Consanguinidad , Salud de la Familia , Ligamiento Genético , Humanos , Jordania , Mutación Missense , Análisis de Secuencia de ADNRESUMEN
To identify novel targets for acute myeloid leukemia (AML) therapy, we performed genome-wide CRISPR-Cas9 screening using AML cell lines, followed by a second screen in vivo. Here, we show that the mRNA decapping enzyme scavenger (DCPS) gene is essential for AML cell survival. The DCPS enzyme interacted with components of pre-mRNA metabolic pathways, including spliceosomes, as revealed by mass spectrometry. RG3039, a DCPS inhibitor originally developed to treat spinal muscular atrophy, exhibited anti-leukemic activity via inducing pre-mRNA mis-splicing. Humans harboring germline biallelic DCPS loss-of-function mutations do not exhibit aberrant hematologic phenotypes, indicating that DCPS is dispensable for human hematopoiesis. Our findings shed light on a pre-mRNA metabolic pathway and identify DCPS as a target for AML therapy.