Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Curr Genet ; 63(4): 669-683, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27915380

RESUMEN

In Aspergillus nidulans, carbon catabolite repression (CCR) is mediated by the global repressor protein CreA. The deubiquitinating enzyme CreB is a component of the CCR network. Genetic interaction was confirmed using a strain containing complete loss-of-function alleles of both creA and creB. No direct physical interaction was identified between tagged versions of CreA and CreB. To identify any possible protein(s) that may form a bridge between CreA and CreB, we purified both proteins from mycelia grown in media that result in repression or derepression. The purified proteins were analysed by LC/MS and identified using MaxQuant and Mascot databases. For both CreA and CreB, 47 proteins were identified in repressing and derepressing conditions. Orthologues of the co-purified proteins were identified in S. cerevisiae and humans. Gene ontology analyses of A. nidulans proteins and yeast and human orthologues were performed. Functional annotation analysis revealed that proteins that preferentially interact with CreA in repressing conditions include histones and histone transcription regulator 3 (Hir3). Proteins interacting with CreB tend to be involved in cellular transportation and organization. Similar findings were obtained using yeast and human orthologues, although the yeast background generated a number of other biological processes involving Mig1p which were not present in the A. nidulans or human background analyses. Hir3 was present in repressing conditions for CreA and in both growth conditions for CreB, suggesting that Hir3, or proteins interacting with Hir3, could be a possible target of CreB.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Proteínas Fúngicas/genética , Mapas de Interacción de Proteínas/genética , Proteínas Represoras/genética , Alelos , Aspergillus nidulans/genética , Represión Catabólica , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Enzimas Desubicuitinizantes/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica/genética , Mutación , Proteínas Represoras/metabolismo
2.
Curr Genet ; 63(4): 647-667, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27878624

RESUMEN

Ubiquitination/deubiquitination pathways are now recognized as key components of gene regulatory mechanisms in eukaryotes. The major transcriptional repressor for carbon catabolite repression in Aspergillus nidulans is CreA, and mutational analysis led to the suggestion that a regulatory ubiquitination/deubiquitination pathway is involved. A key unanswered question is if and how this pathway, comprising CreB (deubiquitinating enzyme) and HulA (ubiquitin ligase) and other proteins, is involved in the regulatory mechanism. Previously, missense alleles of creA and creB were analysed for genetic interactions, and here we extended this to complete loss-of-function alleles of creA and creB, and compared morphological and biochemical phenotypes, which confirmed genetic interaction between the genes. We investigated whether CreA, or a protein in a complex with it, is a direct target of the CreB deubiquitination enzyme, using co-purifications of CreA and CreB, first using strains that overexpress the proteins and then using strains that express the proteins from their native promoters. The Phos-tag system was used to show that CreA is a phosphorylated protein, but no ubiquitination was detected using anti-ubiquitin antibodies and Western analysis. These findings were confirmed using mass spectrometry, which confirmed that CreA was differentially phosphorylated but not ubiquitinated. Thus, CreA is not a direct target of CreB, and nor are proteins that form part of a stable complex with CreA a target of CreB. These results open up new questions regarding the molecular mechanism of CreA repressing activity, and how the ubiquitination pathway involving CreB interacts with this regulatory network.


Asunto(s)
Aspergillus nidulans/genética , Represión Catabólica/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Proteínas Fúngicas/genética , Proteínas Represoras/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Enzimas Desubicuitinizantes/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica/genética , Mutación , Regiones Promotoras Genéticas , Proteínas Represoras/metabolismo , Ubiquitinación/genética
3.
Curr Genet ; 2016 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-27589970

RESUMEN

Ubiquitination/deubiquitination pathways are now recognized as key components of gene regulatory mechanisms in eukaryotes. The major transcriptional repressor for carbon catabolite repression in Aspergillus nidulans is CreA, and mutational analysis led to the suggestion that a regulatory ubiquitination/deubiquitination pathway is involved. A key unanswered question is if and how this pathway, comprising CreB (deubiquitinating enzyme) and HulA (ubiquitin ligase) and other proteins, is involved in the regulatory mechanism. Previously, missense alleles of creA and creB were analysed for genetic interactions, and here we extended this to complete loss-of-function alleles of creA and creB, and compared morphological and biochemical phenotypes, which confirmed genetic interaction between the genes. We investigated whether CreA, or a protein in a complex with it, is a direct target of the CreB deubiquitination enzyme, using co-purifications of CreA and CreB, first using strains that overexpress the proteins and then using strains that express the proteins from their native promoters. The Phos-tag system was used to show that CreA is a phosphorylated protein, but no ubiquitination was detected using anti-ubiquitin antibodies and Western analysis. These findings were confirmed using mass spectrometry, which confirmed that CreA was differentially phosphorylated but not ubiquitinated. Thus, CreA is not a direct target of CreB, and nor are proteins that form part of a stable complex with CreA a target of CreB. These results open up new questions regarding the molecular mechanism of CreA repressing activity, and how the ubiquitination pathway involving CreB interacts with this regulatory network.

4.
mBio ; 13(1): e0373421, 2021 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35164551

RESUMEN

Carbon catabolite repression (CCR) is a common phenomenon of microorganisms that enable efficient utilization of carbon nutrients, critical for the fitness of microorganisms in the wild and for pathogenic species to cause infection. In most filamentous fungal species, the conserved transcription factor CreA/Cre1 mediates CCR. Previous studies demonstrated a primary function for CreA/Cre1 in carbon metabolism; however, the phenotype of creA/cre1 mutants indicated broader roles. The global function and regulatory mechanism of this wide-domain transcription factor has remained elusive. Here, we applied two powerful genomics methods (transcriptome sequencing and chromatin immunoprecipitation sequencing) to delineate the direct and indirect roles of Aspergillus nidulans CreA across diverse physiological processes, including secondary metabolism, iron homeostasis, oxidative stress response, development, N-glycan biosynthesis, unfolded protein response, and nutrient and ion transport. The results indicate intricate connections between the regulation of carbon metabolism and diverse cellular functions. Moreover, our work also provides key mechanistic insights into CreA regulation and identifies CreA as a master regulator controlling many transcription factors of different regulatory networks. The discoveries for this highly conserved transcriptional regulator in a model fungus have important implications for CCR in related pathogenic and industrial species. IMPORTANCE The ability to scavenge and use a wide range of nutrients for growth is crucial for microorganisms' survival in the wild. Carbon catabolite repression (CCR) is a transcriptional regulatory phenomenon of both bacteria and fungi to coordinate the expression of genes required for preferential utilization of carbon sources. Since carbon metabolism is essential for growth, CCR is central to the fitness of microorganisms. In filamentous fungi, CCR is mediated by the conserved transcription factor CreA/Cre1, whose function in carbon metabolism has been well established. However, the global roles and regulatory mechanism of CreA/Cre1 are poorly defined. This study uncovers the direct and indirect functions of CreA in the model organism Aspergillus nidulans over diverse physiological processes and development and provides mechanistic insights into how CreA controls different regulatory networks. The work also reveals an interesting functional divergence between filamentous fungal and yeast CreA/Cre1 orthologues.


Asunto(s)
Aspergillus nidulans , Represión Catabólica , Proteínas Fúngicas/genética , Aspergillus nidulans/genética , Proteínas Represoras/genética , Factores de Transcripción/metabolismo , Homeostasis , Carbono/metabolismo , Regulación Fúngica de la Expresión Génica
5.
Redox Biol ; 34: 101487, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32173345

RESUMEN

Endothelial nitric oxide (NO) is a critical mediator of vascular function and vascular remodeling. NO is produced by endothelial nitric oxide synthase (eNOS), which is activated by calcium (Ca2+)-dependent and Ca2+-independent pathways. Here, we report that neurogranin (Ng), which regulates Ca2+-calmodulin (CaM) signaling in the brain, is uniquely expressed in endothelial cells (EC) of human and mouse vasculature, and is also required for eNOS regulation. To test the role of Ng in eNOS activation, Ng knockdown in human aortic endothelial cells (HAEC) was performed using Ng SiRNA along with Ng knockout (Ng -/-) in mice. Depletion of Ng expression decreased eNOS activity in HAEC and NO production in mice. We show that Ng expression was decreased by short-term laminar flow and long-them oscillating flow shear stress, and that Ng siRNA with shear stress decreased eNOS expression as well as eNOS phosphorylation at S1177. We further reveled that lack of Ng expression decreases both AKT-dependent eNOS phosphorylation, NF-κB-mediated eNOS expression, and promotes endothelial activation. Our findings also indicate that Ng modulates Ca2+-dependent calcineurin (CaN) activity, which suppresses Ca2+-independent AKT-dependent eNOS signaling. Moreover, deletion of Ng in mice also reduced eNOS activity and caused endothelial dysfunction in flow-mediated dilation experiments. Our results demonstrate that Ng plays a crucial role in Ca2+-CaM-dependent eNOS regulation and contributes to vascular remodeling, which is important for the pathophysiology of cardiovascular disease.


Asunto(s)
Neurogranina , Óxido Nítrico Sintasa de Tipo III , Animales , Células Cultivadas , Células Endoteliales/metabolismo , Ratones , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III/genética , Óxido Nítrico Sintasa de Tipo III/metabolismo , Fosforilación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA