Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Ecol Lett ; 27(5): e14415, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38712683

RESUMEN

The breakdown of plant material fuels soil functioning and biodiversity. Currently, process understanding of global decomposition patterns and the drivers of such patterns are hampered by the lack of coherent large-scale datasets. We buried 36,000 individual litterbags (tea bags) worldwide and found an overall negative correlation between initial mass-loss rates and stabilization factors of plant-derived carbon, using the Tea Bag Index (TBI). The stabilization factor quantifies the degree to which easy-to-degrade components accumulate during early-stage decomposition (e.g. by environmental limitations). However, agriculture and an interaction between moisture and temperature led to a decoupling between initial mass-loss rates and stabilization, notably in colder locations. Using TBI improved mass-loss estimates of natural litter compared to models that ignored stabilization. Ignoring the transformation of dead plant material to more recalcitrant substances during early-stage decomposition, and the environmental control of this transformation, could overestimate carbon losses during early decomposition in carbon cycle models.


Asunto(s)
Hojas de la Planta , Ciclo del Carbono , Carbono/metabolismo
2.
Nature ; 562(7725): 57-62, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30258229

RESUMEN

The tundra is warming more rapidly than any other biome on Earth, and the potential ramifications are far-reaching because of global feedback effects between vegetation and climate. A better understanding of how environmental factors shape plant structure and function is crucial for predicting the consequences of environmental change for ecosystem functioning. Here we explore the biome-wide relationships between temperature, moisture and seven key plant functional traits both across space and over three decades of warming at 117 tundra locations. Spatial temperature-trait relationships were generally strong but soil moisture had a marked influence on the strength and direction of these relationships, highlighting the potentially important influence of changes in water availability on future trait shifts in tundra plant communities. Community height increased with warming across all sites over the past three decades, but other traits lagged far behind predicted rates of change. Our findings highlight the challenge of using space-for-time substitution to predict the functional consequences of future warming and suggest that functions that are tied closely to plant height will experience the most rapid change. They also reveal the strength with which environmental factors shape biotic communities at the coldest extremes of the planet and will help to improve projections of functional changes in tundra ecosystems with climate warming.


Asunto(s)
Calentamiento Global , Fenómenos Fisiológicos de las Plantas , Plantas/anatomía & histología , Tundra , Biometría , Mapeo Geográfico , Humedad , Fenotipo , Suelo/química , Análisis Espacio-Temporal , Temperatura , Agua/análisis
3.
J Environ Manage ; 329: 117086, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36565497

RESUMEN

The contradiction between ecological conservation and economic development posed significant challenges to the management of National Parks. From the perspective of Ecological Economics, the cause of the contradiction is the difficulty of creating monetary profits from biodiversity conservation, which is the primary target of National Parks. Integrating Ecosystem Services (ESs) into space boundary delimitation is the next step in National Park management since ESs are closely related to human well-being and can provide monetary benefits. Extending the boundary of the National Park to high-ES areas and promoting ES trading can help generate funds for ecological restoration. Using the Sanjiangyuan National Park (SNP) as an example, this study proposed integrating ESs into National Park delimitation for sustainable National Park management. It was found that the current SNP boundary provides insufficient coverage of high-ES areas, while most of the multiple ES supply areas were dispersed to SNP's southeast edge. The Core conservation area showed the most prominent contradiction between ecological conservation and economic development, resulting in many low-level ES sites in the Traditional use area failing to be included in the Restoration area for protection. Future approaches would be well-advised to re-adjust SNP boundary by expanding the ES hotspot areas on the southeastern edge of SNP, as well as expanding funding sources via ecological product trade and other tools to supplement the input for ecological restoration. Overall, this study can act as a reference for optimizing National Parks within and beyond China, and promote the understanding of the Ecological Economy and sustainable development.


Asunto(s)
Ecosistema , Parques Recreativos , Humanos , Conservación de los Recursos Naturales/métodos , Biodiversidad , China
4.
Environ Monit Assess ; 195(8): 961, 2023 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-37454303

RESUMEN

Heavy metals contaminated soils are posing severe threats to food safety worldwide. Heavy metals absorbed by plant roots from contaminated soils lead to severe plant development issues and a reduction in crop yield and growth. The global population is growing, and the demand for food is increasing. Therefore, it is critical to identify soil remediation strategies that are efficient, economical, and environment friendly. The use of biochar and slag as passivators represents a promising approach among various physicochemical and biological strategies due to their efficiency, cost-effectiveness, and low environmental impact. These passivators employ diverse mechanisms to reduce the bioavailability of metals in contaminated soils, thereby improving crop growth and productivity. Although studies have shown the effectiveness of different passivators, further research is needed globally as this field is still in its early stages. This review sheds light on the innovative utilization of biochar and slag as sustainable strategies for heavy metal remediation, emphasizing their novelty and potential for practical applications. Based on the findings, research gaps have been identified and future research directions proposed to enable the full potential of passivators to be utilized effectively and efficiently under controlled and field conditions.


Asunto(s)
Carbón Orgánico , Restauración y Remediación Ambiental , Metales Pesados , Contaminantes del Suelo , Contaminantes del Suelo/aislamiento & purificación , Metales Pesados/aislamiento & purificación , Residuos Industriales , Suelo/química
5.
Glob Chang Biol ; 28(9): 3110-3144, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34967074

RESUMEN

Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0-5 and 5-15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications.


Asunto(s)
Ecosistema , Suelo , Cambio Climático , Microclima , Temperatura
6.
Environ Res ; 213: 113614, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35710023

RESUMEN

In the present study, we used the horsetail plant (Equisetum arvense) as a green source to synthesize silicon nanoparticles (GS-SiNPs), considering that it could be an effective adsorbent for removing chromium (Cr (VI)) from aqueous solutions. The characterization of GS-SiNPs was performed via Brunauer-Emmett-Teller (BET), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and X-ray photo electron spectroscopy (XPS) techniques. The batch test results of Cr (VI) adsorption on GS-SiNPs showed a high adsorption capacity, reaching 87.9% of the amount added. The pseudo-second order kinetic model was able to comprehensively explain the adsorption kinetics and provided a maximum Cr (VI) adsorption capacity (Qe) of 3.28 mg g-1 (R2 = 90.68), indicating fast initial adsorption by the diffusion process. The Langmuir isotherm model fitted the experimental data, and accurately simulated the adsorption of Cr (VI) on GS-SiNPs (R2 = 97.79). FTIR and XPS spectroscopy gave further confirmation that the main mechanism was ion exchange with Cr and surface complexation through -OH and -COOH. Overall, the results of the research can be of relevance as regards a green and new alternative for the removal of Cr (VI) pollution from affected environments.


Asunto(s)
Nanopartículas , Contaminantes Químicos del Agua , Adsorción , Cromo/análisis , Concentración de Iones de Hidrógeno , Cinética , Silicio , Espectroscopía Infrarroja por Transformada de Fourier , Agua/química , Contaminantes Químicos del Agua/análisis
7.
Proc Natl Acad Sci U S A ; 116(36): 17867-17873, 2019 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-31427510

RESUMEN

Global change drivers (GCDs) are expected to alter community structure and consequently, the services that ecosystems provide. Yet, few experimental investigations have examined effects of GCDs on plant community structure across multiple ecosystem types, and those that do exist present conflicting patterns. In an unprecedented global synthesis of over 100 experiments that manipulated factors linked to GCDs, we show that herbaceous plant community responses depend on experimental manipulation length and number of factors manipulated. We found that plant communities are fairly resistant to experimentally manipulated GCDs in the short term (<10 y). In contrast, long-term (≥10 y) experiments show increasing community divergence of treatments from control conditions. Surprisingly, these community responses occurred with similar frequency across the GCD types manipulated in our database. However, community responses were more common when 3 or more GCDs were simultaneously manipulated, suggesting the emergence of additive or synergistic effects of multiple drivers, particularly over long time periods. In half of the cases, GCD manipulations caused a difference in community composition without a corresponding species richness difference, indicating that species reordering or replacement is an important mechanism of community responses to GCDs and should be given greater consideration when examining consequences of GCDs for the biodiversity-ecosystem function relationship. Human activities are currently driving unparalleled global changes worldwide. Our analyses provide the most comprehensive evidence to date that these human activities may have widespread impacts on plant community composition globally, which will increase in frequency over time and be greater in areas where communities face multiple GCDs simultaneously.


Asunto(s)
Biodiversidad , Ecosistema , Plantas , Teorema de Bayes , Cambio Climático , Actividades Humanas , Humanos
8.
New Phytol ; 231(2): 763-776, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33507570

RESUMEN

The arbuscular mycorrhizal (AM) fungi are a globally distributed group of soil organisms that play critical roles in ecosystem function. However, the ecological niches of individual AM fungal taxa are poorly understood. We collected > 300 soil samples from natural ecosystems worldwide and modelled the realised niches of AM fungal virtual taxa (VT; approximately species-level phylogroups). We found that environmental and spatial variables jointly explained VT distribution worldwide, with temperature and pH being the most important abiotic drivers, and spatial effects generally occurring at local to regional scales. While dispersal limitation could explain some variation in VT distribution, VT relative abundance was almost exclusively driven by environmental variables. Several environmental and spatial effects on VT distribution and relative abundance were correlated with phylogeny, indicating that closely related VT exhibit similar niche optima and widths. Major clades within the Glomeraceae exhibited distinct niche optima, Acaulosporaceae generally had niche optima in low pH and low temperature conditions, and Gigasporaceae generally had niche optima in high precipitation conditions. Identification of the realised niche space occupied by individual and phylogenetic groups of soil microbial taxa provides a basis for building detailed hypotheses about how soil communities respond to gradients and manipulation in ecosystems worldwide.


Asunto(s)
Micorrizas , Ecosistema , Hongos , Concentración de Iones de Hidrógeno , Filogenia , Suelo , Microbiología del Suelo , Temperatura
9.
Am J Bot ; 108(3): 411-422, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33792046

RESUMEN

PREMISE: Climate change is having major impacts on alpine and arctic regions, and inter-annual variations in temperature are likely to increase. How increased climate variability will impact plant reproduction is unclear. METHODS: In a 4-year study on fruit production by an alpine plant community in northern Sweden, we applied three warming regimes: (1) a static level of warming with open-top chambers (OTC), (2) press warming, a yearly stepwise increase in warming, and (3) pulse warming, a single-year pulse event of higher warming. We analyzed the relationship between fruit production and monthly temperatures during the budding period, fruiting period, and whole fruit production period and the effect of winter and summer precipitation on fruit production. RESULTS: Year and treatment had a significant effect on total fruit production by evergreen shrubs, Cassiope tetragona, and Dryas octopetala, with large variations between treatments and years. Year, but not treatment, had a significant effect on deciduous shrubs and graminoids, both of which increased fruit production over the 4 years, while forbs were negatively affected by the press warming, but not by year. Fruit production was influenced by ambient temperature during the previous-year budding period, current-year fruiting period, and whole fruit production period. Minimum and average temperatures were more important than maximum temperature. In general, fruit production was negatively correlated with increased precipitation. CONCLUSIONS: These results indicate that predicted increased climate variability and increased precipitation due to climate change may affect plant reproductive output and long-term community dynamics in alpine meadow communities.


Asunto(s)
Frutas , Pradera , Regiones Árticas , Cambio Climático , Suecia , Temperatura
10.
Conserv Biol ; 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-34129706

RESUMEN

There is increasing interest in broad-scale analysis, modeling, and prediction of the distribution and composition of plant species assemblages under climatic, environmental, and biotic filtering, particularly for conservation purposes. We devised a method (broad-scale analysis & modeling of plant assemblages under climatic-biotic-environmental co-filtering, BAM-PACC) for reliably predicting the impact of climate change on arbitrarily large assemblages of plant communities, while also considering competing biotic and abiotic factors. When applied to a large set of plant communities in the Swiss Alps, BAM-PACC explained presences/absences of 175 plant species in 608 plots with >87% cross-validated accuracy, predicted decreases in α, ß, and γ diversity by 2040 under both moderate and extreme climate scenarios, and identified plant species likely to be favored/disfavored by climate change. BAM-PACC also revealed the importance of topography and soil in determining the distribution of plant species and their response to climate change, and showed the overriding importance of temperature extremes rather than averages. BAM-PACC was able to address a number of challenging research problems, such as scaling to large numbers of species, exploiting species relationships, dealing with species rarity, and overwhelming proportion of absences in the presence/absence matrix. By handling hundreds/thousands of plants and plots simultaneously over large areas, BAM-PACC can help broad-scale conservation of plant species under climate change, as it allows species that require urgent conservation planning and policies (assisted migration, seed conservation, ex-situ conservation) to be detected and prioritized. BAM-PACC can also increase the practicality of assisted colonization of plant species, by helping to prevent ill-advised introduction of plant species with limited future survival probability in a certain area. This article is protected by copyright. All rights reserved.

11.
Mycorrhiza ; 31(6): 685-697, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34554321

RESUMEN

Qatar is largely characterized by a hyper-arid climate and low soil fertility which create a stressful soil environment for arbuscular mycorrhizal (AM) fungi. In a study of AM fungal communities and their relationship with soil chemical characteristics, we used a high-throughput sequencing technique to explore AM fungal diversity and community composition in different habitats across Qatar. We identified a total of 79 AM fungal taxa, over 77% of which were species from the Glomeraceae family. The lowest AM fungal diversity was observed in saltmarsh and in one rawdha site, while the highest richness, effective number of species, and diversity were observed in rawdha and sabkha communities. NMDS and multiple regression analyses showed that AM fungi were negatively correlated with soil pH and TC, but positively correlated with K and NO3-. AM fungi also were positively correlated with Cd, with the latter suggesting that very low levels of heavy metals may not always be harmful to AM fungi. These findings provide baseline information on AM fungal assemblages and the chemical drivers of diversity across communities in Qatar. This work partly compensates for the current lack of broad-scale studies in the Arabian Peninsula by providing understanding of overall patterns of AM fungi and their drivers in the region.


Asunto(s)
Micobioma , Micorrizas , Ecosistema , Hongos/genética , Suelo , Microbiología del Suelo
12.
Artículo en Inglés | MEDLINE | ID: mdl-34744484

RESUMEN

The study evaluated perceived reactions and counter-actions of Himalayan communities to climate change. The evaluation was conducted through identification and characterization of 62 socio-environment-specific indicators in three altitude zones (< 1200 m asl (zone A), 1200-1800 m asl (zone B), and > 1800 m asl (zone C)) in Pauri district, Uttarakhand, India, using a bottom-up, indicator-based approach. Indicators with higher significance for the local economy, livelihoods, or conservation were selected and assimilated into dimensions of vulnerability and resilience. Finally, these were integrated into a sustainable livelihood framework in an approach intended to calculate vulnerability and resilience jointly. The results indicated that the vulnerability and resilience of the mountain communities studied varied widely along the altitude gradient, due to variations in socioeconomic profile, livelihood requirements, resource availability, accessibility, and utilization pattern, and climate risk. The overall values for vulnerability (exposure + sensitivity-adaptive capacity) and resilience (exposure + sensitivity-restorative capacity) were, respectively, 0.34 and 0.28 in zone A, 0.54 and 0.37 in zone B, and 0.65 and 0.59 in zone C. There was a significant difference in contribution of indicators to vulnerability and resilience along the altitudinal gradient was recorded. Strategies for dealing with site-specific vulnerability are required and should address bottlenecks in accessibility and availability of food, water, and healthcare; sustainable utilization of forest resources; educational attainment and skill enhancement; and migration. These results extend current knowledge among the research community and policymakers on socio-ecological changes affecting mountain communities. To reduce the policy level gap between bottom-up and top-down approaches, we suggest precautionary and ongoing site-specific traditional practices and modern adaptation practices, leading to effective and efficient handling of local issues in the context of climate change.

13.
Glob Chang Biol ; 26(11): 6616-6629, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32311220

RESUMEN

Current analyses and predictions of spatially explicit patterns and processes in ecology most often rely on climate data interpolated from standardized weather stations. This interpolated climate data represents long-term average thermal conditions at coarse spatial resolutions only. Hence, many climate-forcing factors that operate at fine spatiotemporal resolutions are overlooked. This is particularly important in relation to effects of observation height (e.g. vegetation, snow and soil characteristics) and in habitats varying in their exposure to radiation, moisture and wind (e.g. topography, radiative forcing or cold-air pooling). Since organisms living close to the ground relate more strongly to these microclimatic conditions than to free-air temperatures, microclimatic ground and near-surface data are needed to provide realistic forecasts of the fate of such organisms under anthropogenic climate change, as well as of the functioning of the ecosystems they live in. To fill this critical gap, we highlight a call for temperature time series submissions to SoilTemp, a geospatial database initiative compiling soil and near-surface temperature data from all over the world. Currently, this database contains time series from 7,538 temperature sensors from 51 countries across all key biomes. The database will pave the way toward an improved global understanding of microclimate and bridge the gap between the available climate data and the climate at fine spatiotemporal resolutions relevant to most organisms and ecosystem processes.


Asunto(s)
Ecosistema , Microclima , Cambio Climático , Nieve , Temperatura
14.
Environ Monit Assess ; 192(10): 632, 2020 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-32902796

RESUMEN

This study assessed the climate change in Pauri district, Uttarakhand, India, a region highly vulnerable to climate change with potentially high loss of livelihoods and lives. The scale of change in the district's climate was analyzed using meteorological station data (1901-2000) and grid data (1985-2015). Perceptions of climate change among forest-dependent communities in three altitude zones (< 1200 m asl (zone A); 1200-1800 m asl (zone B), and > 1800 m asl (zone C)) in the study region were surveyed with respect to 14 climate-specific indicators. Annual mean, maximum, and minimum temperature of seasonal data indicated increasing trends except monsoon. Percentage cloud cover showed an increase, of approximately 3%, while diurnal temperature displayed decreasing trends. Rainfall in the district showed a decreasing trend, with more than 50% of years 1985-2015 receiving less rainfall than the annual average. More than 90% of respondents in zones A and B, and around 65-70% respondents in zone C, reported changes in climate parameters. These findings confirm the long-term observable changes in climate in the region and demonstrate the utility of station data, grid data, and surveys of local communities' perceptions when analyzing climate change. The analysis provided important clues about the nature of climate changes in the district. The results can be used to reduce the gap between bottom-up understanding and top-down policies and to formulate precautionary and ongoing site-specific adaptation practices for communities in different altitude zones in the study region, leading to effective and efficient mitigation of climate change impacts.


Asunto(s)
Cambio Climático , Meteorología , Monitoreo del Ambiente , Bosques , India
15.
Int J Biometeorol ; 63(5): 569-577, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-29249042

RESUMEN

Continuous long-term temperature sensitivity (ST) of leaf unfolding date (LUD) and main impacting factors in spring in the period 1978-2014 for 40 plant species in Mudanjiang, Heilongjiang Province, Northeast China, were analyzed by using observation data from the China Phenological Observation Network (CPON), together with the corresponding meteorological data from the China Meteorological Data Service Center. Temperature sensitivities, slopes of the regression between LUD and mean temperature during the optimum preseason (OP), were analyzed using 15-year moving window to determine their temporal trends. Major factors impacting ST were then chosen and evaluated by applying a random sampling method. The results showed that LUD was sensitive to mean temperature in a defined period before phenophase onset for all plant species analyzed. Over the period 1978-2014, the mean ST of LUD for all plant species was - 3.2 ± 0.49 days °C-1. The moving window analysis revealed that 75% of species displayed increasing ST of LUD, with 55% showing significant increases (P < 0.05). ST for the other 25% exhibited a decreasing trend, with 17% showing significant decreases (P < 0.05). On average, ST increased by 16%, from - 2.8 ± 0.83 days °C-1 during 1980-1994 to - 3.30 ± 0.65 days °C-1 during 2000-2014. For species with later LUD and longer OP, ST tended to increase more, while species with earlier LUD and shorter OP tended to display a decreasing ST. The standard deviation of preseason temperature impacted the temporal variation in ST. Chilling conditions influenced ST for some species, but photoperiod limitation did not have significant or coherent effects on changes in ST.


Asunto(s)
Cambio Climático/historia , Embryophyta/crecimiento & desarrollo , Hojas de la Planta/crecimiento & desarrollo , Estaciones del Año , China , Historia del Siglo XX , Historia del Siglo XXI , Temperatura
16.
Ecol Lett ; 20(12): 1534-1545, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29067791

RESUMEN

Temporal stability of ecosystem functioning increases the predictability and reliability of ecosystem services, and understanding the drivers of stability across spatial scales is important for land management and policy decisions. We used species-level abundance data from 62 plant communities across five continents to assess mechanisms of temporal stability across spatial scales. We assessed how asynchrony (i.e. different units responding dissimilarly through time) of species and local communities stabilised metacommunity ecosystem function. Asynchrony of species increased stability of local communities, and asynchrony among local communities enhanced metacommunity stability by a wide range of magnitudes (1-315%); this range was positively correlated with the size of the metacommunity. Additionally, asynchronous responses among local communities were linked with species' populations fluctuating asynchronously across space, perhaps stemming from physical and/or competitive differences among local communities. Accordingly, we suggest spatial heterogeneity should be a major focus for maintaining the stability of ecosystem services at larger spatial scales.


Asunto(s)
Biodiversidad , Ecosistema , Plantas , Reproducibilidad de los Resultados
17.
Ann Bot ; 120(1): 159-170, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28651333

RESUMEN

Background and Aims: Climate change is expected to have major impacts on high alpine and arctic ecosystems in the future, but empirical data on the impact of long-term warming on lichen diversity and richness are sparse. This study report the effects of 18 years of ambient and experimental warming on lichens and vascular plant cover in two alpine plant communities, a dry heath with sparse canopy cover (54 %) and a mesic meadow with a more developed (67 %) canopy cover, in sub-arctic Sweden. Methods: The effects of long-term passive experimental warming using open top chambers (OTCs) on lichens and total vascular plant cover, and the impact of plant cover on lichen community parameters, were analysed. Key Results: Between 1993 and 2013, mean annual temperature increased about 2 °C. Both site and experimental warming had a significant effect on cover, species richness, effective number of species evenness of lichens, and total plant canopy cover. Lichen cover increased in the heath under ambient conditions, and remained more stable under experimental warming. The negative effect on species richness and effective number of species was driven by a decrease in lichens under experimental warming in the meadow. Lichen cover, species richness, effective number of species evenness were negatively correlated with plant canopy cover. There was a significant negative impact on one species and a non-significant tendency of lower abundance of the most common species in response to experimental warming. Conclusions: The results from the long-term warming study imply that arctic and high alpine lichen communities are likely to be negatively affected by climate change and an increase in plant canopy cover. Both biotic and abiotic factors are thus important for future impacts of climate change on lichens.


Asunto(s)
Cambio Climático , Ecosistema , Líquenes/fisiología , Regiones Árticas , Plantas , Suecia
18.
Int J Biometeorol ; 61(3): 541-548, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27542087

RESUMEN

Forests are expected to expand into alpine areas due to global climate change. It has recently been shown that temperature alone cannot realistically explain this process and that upslope tree advance in a warmer scenario may depend on the availability of sites with adequate geomorphic/topographic characteristics. Here, we show that, besides topography (slope and aspect), climate itself can produce a braking effect on the upslope advance of subalpine forests and that tree limit is influenced by non-linear and non-monotonic contributions of the climate variables which act upon treeline upslope advance with varying relative strengths. Our results suggest that global climate change impact on the upslope advance of subalpine forests should be interpreted in a more complex way where climate can both speed up and slow down the process depending on complex patterns of contribution from each climate and non-climate variable.


Asunto(s)
Cambio Climático , Bosques , Modelos Teóricos , Árboles , Altitud , Clima , Suecia , Temperatura
19.
Sci Total Environ ; 945: 174083, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38906301

RESUMEN

Plant phenology is influenced by a combined effect of phylogeny and climate, although it is yet unclear how these two variables work together to change phenology. We synthesized 107 previously published studies to examine whether phenological changes were impacted by both phylogeny and climate changes in various geographical settings globally. Phenological observation data from 52,463 plant species at 71 sites worldwide revealed that 90 % of phenological records showed phylogenetic conservation. i.e., closely related species exhibited similar phenology. To explore the significant and non-significant phylogenetic conservation between plant phenophases, our dataset comprises 5,47,000 observation records from the four main phenophases (leaf bud, leaf, flower, and fruit). Three-dimensional geographical distribution (altitude, latitude, and longitude) data analysis revealed that plant phenology may exhibit phylogenetic signals at finer special scales (optimal environmental conditions) that vanish in high altitude and latitude regions. Additionally, climatic sensitivity analysis suggested that phylogenetic signals were associated with plant phenophases and were stronger in the regions of ideal temperature (7-18 °C) and photoperiod (10-14 h) and weaker in harsh climatic conditions. These results show that phylogenetic conservation in plant phenological traits is frequently influenced by the interaction of harsh climatic conditions and geographical ranges. This meta-analysis enhances our knowledge of predicting species responses over geographic gradients under varied climatic conditions.


Asunto(s)
Filogenia , Flores , Geografía , Desarrollo de la Planta , Fenómenos Fisiológicos de las Plantas , Plantas/clasificación
20.
Biology (Basel) ; 13(3)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38534459

RESUMEN

Salinity severely affects the health and productivity of plants, with root-associated microbes, including fungi, potentially playing a crucial role in mitigating this effect and promoting plant health. This study employed metagenomics to investigate differences in the structures of the epiphyte mycobiomes in the rhizospheres of seedlings of two distinct date palm cultivars with contrasting salinity tolerances, the susceptible cultivar, 'Zabad', and the tolerant cultivar, 'Umsila'. Next-generation sequencing (NGS) of the internal transcribed spacer (ITS) rRNA was utilized as a DNA barcoding tool. The sequencing of 12 mycobiome libraries yielded 905,198 raw sequences of 268,829 high-quality reads that coded for 135 unique and annotatable operational taxonomic units (OTUs). An OTU analysis revealed differences in the rhizofungal community structures between the treatments regardless of genotype, and non-metric dimensional scaling (N-MDS) analyses demonstrated distinct separations between the cultivars under saline stress. However, these differences were not detected under the control environmental conditions, i.e., no salinity. The rhizospheric fungal community included four phyla (Ascomycota, Basidiomycota, Chytridiomycota, and Mucoromycota), with differences in the abundances of Aspergillus, Clonostachys, and Fusarium genera in response to salinity, regardless of the genotype. Differential pairwise comparisons showed that Fusarium falciforme-solani and Aspergillus sydowii-versicolor increased in abundance under saline conditions, providing potential future in vitro isolation guidelines for plant growth-promoting fungi. This study highlights the intricate dynamics of the rhizosphere microbial communities in date palms and their responses to salt stress. Additionally, we found no support for the hypothesis that indigenous epiphytic fungal communities are significantly involved in salinity tolerance in date palms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA