Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Immunogenetics ; 76(3): 213-217, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38602517

RESUMEN

There is tremendous interindividual and interracial variability in the outcome of SARS-CoV-2 infection, suggesting the involvement of host genetic factors. Here, we investigated whether IgG allotypes GM (γ marker) 3 and GM 17, genetic markers of IgG1, contributed to the severity of COVID-19. IgG1 plays a pivotal role in response against SARS-CoV-2 infection. We also investigated whether these GM alleles synergistically/epistatically with IGHG3 and FCGR2A alleles-which have been previously implicated in COVID-19-modulated the extent of COVID-19 severity. The study population consisted of 316 COVID-19 patients who needed treatment in the intensive care unit of Hospital Universitario Central de Asturias. All individuals were genotyped for GM 3/17, IGHG3 hinge length, and FCGR2A rs1801274 A/G polymorphisms. Among the 316 critical patients, there were 86 deaths. The risk of death among critical patients was significantly higher in subjects with GM 17 (IgG1) and short hinge length (IgG3). GM 17-carriers were at almost three-fold higher risk of death than non-carriers (p < 0.001; OR = 2.86, CI 1.58-5.16). Subjects with short hinge length of IgG3 had a two-fold higher risk of death than those with medium hinge length (p = 0.01; OR = 2.16, CI 1.19-3.90). GM 3/3 and IGHG3 (MM) genotypes were less frequent among death vs. survivors (9% vs 36%, p < 0.001) and associated with protective effect (OR = 0.18, 95% CI = 0.08-0.39). This is the first report implicating IgG1 allotypes in COVID-19-spurred death. It needs to be replicated in an independent study population.


Asunto(s)
COVID-19 , Inmunoglobulina G , Receptores de IgG , SARS-CoV-2 , Índice de Severidad de la Enfermedad , Humanos , COVID-19/genética , COVID-19/inmunología , COVID-19/mortalidad , Masculino , Femenino , Persona de Mediana Edad , Anciano , SARS-CoV-2/inmunología , Receptores de IgG/genética , Alotipos de Inmunoglobulina Gm/genética , Genotipo , Polimorfismo de Nucleótido Simple , Adulto , Genes de Inmunoglobulinas , Alelos
2.
Mol Genet Genomics ; 299(1): 49, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38704518

RESUMEN

The main objective of this study was to determine whether the common Y-haplogroups were be associated with the risk of developing severe COVID-19 in Spanish male. We studied 479 patients who required hospitalization due to COVID-19 and 285 population controls from the region of Asturias (northern Spain), They were genotyped for several polymorphisms that define the common European Y-haplogroups. We compared the frequencies between patients and controls aged ≤ 65 and >65 years. There were no different haplogroup frequencies between the two age groups of controls. Haplogroup R1b was less common in patients aged ≤65 years. Haplogroup I was more common in the two patient´s groups compared to controls (p = 0.02). Haplogroup R1b was significantly more frequent among hypertensive patients, without difference between the hypertensive and normotensive controls. This suggested that R1b could increase the risk for severe COVID-19 among male with pre-existing hypertension. In conclusion, we described the Y-haplogroup structure among Asturians. We found an increased risk of severe COVID-19 among haplogroup I carriers, and a significantly higher frequency of R1b among hypertensive patients. These results indicate that Y-chromosome variants could serve as markers to define the risk of developing a severe form of COVID-19.


Asunto(s)
COVID-19 , Cromosomas Humanos Y , Haplotipos , Hipertensión , SARS-CoV-2 , Humanos , Masculino , COVID-19/genética , COVID-19/epidemiología , España/epidemiología , Haplotipos/genética , Anciano , Persona de Mediana Edad , SARS-CoV-2/genética , Cromosomas Humanos Y/genética , Hipertensión/genética , Predisposición Genética a la Enfermedad , Estudios de Casos y Controles , Polimorfismo de Nucleótido Simple , Adulto , Femenino
3.
Crit Care ; 28(1): 75, 2024 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-38486268

RESUMEN

BACKGROUND: Flow starvation is a type of patient-ventilator asynchrony that occurs when gas delivery does not fully meet the patients' ventilatory demand due to an insufficient airflow and/or a high inspiratory effort, and it is usually identified by visual inspection of airway pressure waveform. Clinical diagnosis is cumbersome and prone to underdiagnosis, being an opportunity for artificial intelligence. Our objective is to develop a supervised artificial intelligence algorithm for identifying airway pressure deformation during square-flow assisted ventilation and patient-triggered breaths. METHODS: Multicenter, observational study. Adult critically ill patients under mechanical ventilation > 24 h on square-flow assisted ventilation were included. As the reference, 5 intensive care experts classified airway pressure deformation severity. Convolutional neural network and recurrent neural network models were trained and evaluated using accuracy, precision, recall and F1 score. In a subgroup of patients with esophageal pressure measurement (ΔPes), we analyzed the association between the intensity of the inspiratory effort and the airway pressure deformation. RESULTS: 6428 breaths from 28 patients were analyzed, 42% were classified as having normal-mild, 23% moderate, and 34% severe airway pressure deformation. The accuracy of recurrent neural network algorithm and convolutional neural network were 87.9% [87.6-88.3], and 86.8% [86.6-87.4], respectively. Double triggering appeared in 8.8% of breaths, always in the presence of severe airway pressure deformation. The subgroup analysis demonstrated that 74.4% of breaths classified as severe airway pressure deformation had a ΔPes > 10 cmH2O and 37.2% a ΔPes > 15 cmH2O. CONCLUSIONS: Recurrent neural network model appears excellent to identify airway pressure deformation due to flow starvation. It could be used as a real-time, 24-h bedside monitoring tool to minimize unrecognized periods of inappropriate patient-ventilator interaction.


Asunto(s)
Aprendizaje Profundo , Respiración Artificial , Adulto , Humanos , Inteligencia Artificial , Pulmón , Respiración Artificial/métodos , Ventiladores Mecánicos
4.
Crit Care ; 28(1): 91, 2024 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-38515193

RESUMEN

BACKGROUND: Acute respiratory distress syndrome (ARDS) can be classified into sub-phenotypes according to different inflammatory/clinical status. Prognostic enrichment was achieved by grouping patients into hypoinflammatory or hyperinflammatory sub-phenotypes, even though the time of analysis may change the classification according to treatment response or disease evolution. We aimed to evaluate when patients can be clustered in more than 1 group, and how they may change the clustering of patients using data of baseline or day 3, and the prognosis of patients according to their evolution by changing or not the cluster. METHODS: Multicenter, observational prospective, and retrospective study of patients admitted due to ARDS related to COVID-19 infection in Spain. Patients were grouped according to a clustering mixed-type data algorithm (k-prototypes) using continuous and categorical readily available variables at baseline and day 3. RESULTS: Of 6205 patients, 3743 (60%) were included in the study. According to silhouette analysis, patients were grouped in two clusters. At baseline, 1402 (37%) patients were included in cluster 1 and 2341(63%) in cluster 2. On day 3, 1557(42%) patients were included in cluster 1 and 2086 (57%) in cluster 2. The patients included in cluster 2 were older and more frequently hypertensive and had a higher prevalence of shock, organ dysfunction, inflammatory biomarkers, and worst respiratory indexes at both time points. The 90-day mortality was higher in cluster 2 at both clustering processes (43.8% [n = 1025] versus 27.3% [n = 383] at baseline, and 49% [n = 1023] versus 20.6% [n = 321] on day 3). Four hundred and fifty-eight (33%) patients clustered in the first group were clustered in the second group on day 3. In contrast, 638 (27%) patients clustered in the second group were clustered in the first group on day 3. CONCLUSIONS: During the first days, patients can be clustered into two groups and the process of clustering patients may change as they continue to evolve. This means that despite a vast majority of patients remaining in the same cluster, a minority reaching 33% of patients analyzed may be re-categorized into different clusters based on their progress. Such changes can significantly impact their prognosis.


Asunto(s)
COVID-19 , Síndrome de Dificultad Respiratoria , Humanos , Análisis por Conglomerados , Unidades de Cuidados Intensivos , Estudios Prospectivos , Síndrome de Dificultad Respiratoria/terapia , Estudios Retrospectivos
5.
Mol Ther ; 31(9): 2681-2701, 2023 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-37340634

RESUMEN

Virus-induced lung injury is associated with loss of pulmonary epithelial-endothelial tight junction integrity. While the alveolar-capillary membrane may be an indirect target of injury, viruses may interact directly and/or indirectly with miRs to augment their replication potential and evade the host antiviral defense system. Here, we expose how the influenza virus (H1N1) capitalizes on host-derived interferon-induced, microRNA (miR)-193b-5p to target occludin and compromise antiviral defenses. Lung biopsies from patients infected with H1N1 revealed increased miR-193b-5p levels, marked reduction in occludin protein, and disruption of the alveolar-capillary barrier. In C57BL/6 mice, the expression of miR-193b-5p increased, and occludin decreased, 5-6 days post-infection with influenza (PR8). Inhibition of miR-193b-5p in primary human bronchial, pulmonary microvascular, and nasal epithelial cells enhanced antiviral responses. miR-193b-deficient mice were resistant to PR8. Knockdown of occludin, both in vitro and in vivo, and overexpression of miR-193b-5p reconstituted susceptibility to viral infection. miR-193b-5p inhibitor mitigated loss of occludin, improved viral clearance, reduced lung edema, and augmented survival in infected mice. Our results elucidate how the innate immune system may be exploited by the influenza virus and how strategies that prevent loss of occludin and preserve tight junction function may limit susceptibility to virus-induced lung injury.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Gripe Humana , Lesión Pulmonar , MicroARNs , Humanos , Animales , Ratones , Gripe Humana/complicaciones , Gripe Humana/genética , Gripe Humana/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Ocludina/genética , Ocludina/metabolismo , Lesión Pulmonar/metabolismo , Uniones Estrechas/metabolismo , Carga Viral , Subtipo H1N1 del Virus de la Influenza A/genética , Ratones Endogámicos C57BL , Antivirales
6.
Am J Respir Crit Care Med ; 208(3): 256-269, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37154608

RESUMEN

Rationale: Mesenchymal stromal cells (MSCs) may modulate inflammation, promoting repair in coronavirus disease (COVID-19)-related acute respiratory distress syndrome (ARDS). Objectives: We investigated the safety and efficacy of ORBCEL-C (CD362 [cluster of differentiation 362]-enriched, umbilical cord-derived MSCs) in COVID-19-related ARDS. Methods: In this multicenter, randomized, double-blind, allocation-concealed, placebo-controlled trial (NCT03042143), patients with moderate to severe COVID-19-related ARDS were randomized to receive ORBCEL-C (400 million cells) or placebo (Plasma-Lyte 148). The primary safety and efficacy outcomes were the incidence of serious adverse events and oxygenation index at Day 7, respectively. Secondary outcomes included respiratory compliance, driving pressure, PaO2:FiO2 ratio, and Sequential Organ Failure Assessment score. Clinical outcomes relating to duration of ventilation, lengths of ICU and hospital stays, and mortality were collected. Long-term follow-up included diagnosis of interstitial lung disease at 1 year and significant medical events and mortality at 2 years. Transcriptomic analysis was performed on whole blood at Days 0, 4, and 7. Measurements and Main Results: Sixty participants were recruited (final analysis: n = 30 received ORBCEL-C, n = 29 received placebo; 1 participant in the placebo group withdrew consent). Six serious adverse events occurred in the ORBCEL-C group and three in the placebo group (risk ratio, 2.9 [95% confidence interval, 0.6-13.2]; P = 0.25). Day 7 mean (SD) oxygenation index did not differ (ORBCEL-C, 98.3 [57.2] cm H2O/kPa; placebo, 96.6 [67.3] cm H2O/kPa). There were no differences in secondary surrogate outcomes or in mortality at Day 28, Day 90, 1 year, or 2 years. There was no difference in the prevalence of interstitial lung disease at 1 year or significant medical events up to 2 years. ORBCEL-C modulated the peripheral blood transcriptome. Conclusion: ORBCEL-C MSCs were safe in subjects with moderate to severe COVID-19-related ARDS but did not improve surrogates of pulmonary organ dysfunction.


Asunto(s)
COVID-19 , Enfermedades Pulmonares Intersticiales , Síndrome de Dificultad Respiratoria , Humanos , Pulmón , Células del Estroma
7.
Immunogenetics ; 75(2): 91-98, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36434151

RESUMEN

MDA5, encoded by the IFIH1gene, is a cytoplasmic sensor of viral RNAs that triggers interferon (IFN) antiviral responses. Common and rare IFIH1 variants have been associated with the risk of type 1 diabetes and other immune-mediated disorders, and with the outcome of viral diseases. Variants associated with reduced IFN expression would increase the risk for severe viral disease. The MDA5/IFN pathway would play a critical role in the response to SARS-CoV-2 infection mediating the extent and severity of COVID-19. Here, we genotyped a cohort of 477 patients with critical ICU COVID-19 (109 death) for three IFIH1 functional variants: rs1990760 (p.Ala946Thr), rs35337543 (splicing variant, intron 8 + 1G > C), and rs35744605 (p.Glu627Stop). The main finding of our study was a significant increased frequency of rs1990760 C-carriers in early-onset patients (< 65 years) (p = 0.01; OR = 1.64, 95%CI = 1.18-2.43). This variant was also increased in critical vs. no-ICU patients and in critical vs. asymptomatic controls. The rs35744605 C variant was associated with increased blood IL6 levels at ICU admission. The rare rs35337543 splicing variant showed a trend toward protection from early-onset critical COVID-19. In conclusion, IFIH1 variants associated with reduced gene expression and lower IFN response might contribute to develop critical COVID-19 with an age-dependent effect.


Asunto(s)
COVID-19 , Diabetes Mellitus Tipo 1 , Humanos , Helicasa Inducida por Interferón IFIH1/genética , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , COVID-19/genética , SARS-CoV-2 , Diabetes Mellitus Tipo 1/genética
8.
Eur Respir J ; 61(1)2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36104291

RESUMEN

BACKGROUND: Infections caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may cause a severe disease, termed coronavirus disease 2019 (COVID-19), with significant mortality. Host responses to this infection, mainly in terms of systemic inflammation, have emerged as key pathogenetic mechanisms and their modulation has shown a mortality benefit. METHODS: In a cohort of 56 critically ill COVID-19 patients, peripheral blood transcriptomes were obtained at admission to an intensive care unit (ICU) and clustered using an unsupervised algorithm. Differences in gene expression, circulating microRNAs (c-miRNAs) and clinical data between clusters were assessed, and circulating cell populations estimated from sequencing data. A transcriptomic signature was defined and applied to an external cohort to validate the findings. RESULTS: We identified two transcriptomic clusters characterised by expression of either interferon-related or immune checkpoint genes, respectively. Steroids have cluster-specific effects, decreasing lymphocyte activation in the former but promoting B-cell activation in the latter. These profiles have different ICU outcomes, despite no major clinical differences at ICU admission. A transcriptomic signature was used to identify these clusters in two external validation cohorts (with 50 and 60 patients), yielding similar results. CONCLUSIONS: These results reveal different underlying pathogenetic mechanisms and illustrate the potential of transcriptomics to identify patient endotypes in severe COVID-19 with the aim to ultimately personalise their therapies.


Asunto(s)
COVID-19 , Humanos , COVID-19/genética , SARS-CoV-2 , Transcriptoma , Enfermedad Crítica , Unidades de Cuidados Intensivos
9.
Genes Immun ; 23(6): 205-208, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36088493

RESUMEN

IgG3 would play an important role in the immune adaptive response against SARS-CoV-2, and low plasma levels might increase the risk of COVID-19 severity and mortality. The IgG3 hinge sequence has a variable repeat of a 15 amino acid exon with common 4-repeats (M) and 3-repeats (S). This length IGHG3 polymorphism might affect the IgG3 effector functions. The short hinge length would reduce the IgG3 flexibility and impairs the neutralization and phagocytosis compared to larger length-isoforms. We genotyped the IGHG3 length polymorphism in patients with critical COVID-19 (N = 516; 107 death) and 152 moderate-severe but no-critical cases. Carriers of the S allele had an increased risk of critical ICU and mortality (p < 0.001, OR = 2.79, 95% CI = 1.66-4.65). This adverse effect might be explained by a less flexibility and reduced ability to induce phagocytosis or viral neutralization for the short length allele. We concluded that the IgG3 hinge length polymorphism could be a predictor of critical COVID-19 and the risk of death. This study was based on a limited number of patients from a single population, and requires validation in larger cohorts.


Asunto(s)
COVID-19 , Aminoácidos , COVID-19/genética , Exones , Humanos , Inmunoglobulina G/genética , SARS-CoV-2
10.
Am J Respir Cell Mol Biol ; 66(2): e1-e14, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35103557

RESUMEN

Advancements in methods, technology, and our understanding of the pathobiology of lung injury have created the need to update the definition of experimental acute lung injury (ALI). We queried 50 participants with expertise in ALI and acute respiratory distress syndrome using a Delphi method composed of a series of electronic surveys and a virtual workshop. We propose that ALI presents as a "multidimensional entity" characterized by four "domains" that reflect the key pathophysiologic features and underlying biology of human acute respiratory distress syndrome. These domains are 1) histological evidence of tissue injury, 2) alteration of the alveolar-capillary barrier, 3) presence of an inflammatory response, and 4) physiologic dysfunction. For each domain, we present "relevant measurements," defined as those proposed by at least 30% of respondents. We propose that experimental ALI encompasses a continuum of models ranging from those focusing on gaining specific mechanistic insights to those primarily concerned with preclinical testing of novel therapeutics or interventions. We suggest that mechanistic studies may justifiably focus on a single domain of lung injury, but models must document alterations of at least three of the four domains to qualify as "experimental ALI." Finally, we propose that a time criterion defining "acute" in ALI remains relevant, but the actual time may vary based on the specific model and the aspect of injury being modeled. The continuum concept of ALI increases the flexibility and applicability of the definition to multiple models while increasing the likelihood of translating preclinical findings to critically ill patients.


Asunto(s)
Lesión Pulmonar Aguda/patología , Inflamación/fisiopatología , Informe de Investigación/tendencias , Lesión Pulmonar Aguda/inmunología , Animales
11.
Clin Immunol ; 236: 108954, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35149195

RESUMEN

Polymorphisms of Fcγ receptors have been associated with variable responses to infections. We determined the association of functional polymorphisms rs1801274 in the FCGR2A and rs396991 in the FCGR3A with COVID-19 severity. This study involved 453 patients with severe COVID-19, in which the FCGR2A rs1801274 G-allele (131-Arg) was significantly associated with death (p = 0.02, OR = 1.47). This effect was independent of age and increased IL6 and D-Dimer levels. This study suggests that the FCGR2A gene might be associated with the risk of death among COVID-19 patients. Our study has several limitations, mainly the limited number of patients and the inclusion of a single population. It is thus necessary to confirm this result in larger cohorts from different populations.


Asunto(s)
COVID-19 , Receptores de IgG , Alelos , COVID-19/genética , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Polimorfismo de Nucleótido Simple , Receptores de IgG/genética
12.
Eur Respir J ; 60(1)2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34887328

RESUMEN

BACKGROUND: Mechanical stretch of cancer cells can alter their invasiveness. During mechanical ventilation, lungs may be exposed to an increased amount of stretch, but the consequences on lung tumours have not been explored. METHODS: To characterise the influence of mechanical ventilation on the behaviour of lung tumours, invasiveness assays and transcriptomic analyses were performed in cancer cell lines cultured in static conditions or under cyclic stretch. Mice harbouring lung melanoma implants were submitted to mechanical ventilation and metastatic spread was assessed. Additional in vivo experiments were performed to determine the mechanodependent specificity of the response. Incidence of metastases was studied in a cohort of lung cancer patients that received mechanical ventilation compared with a matched group of nonventilated patients. RESULTS: Stretch increases invasiveness in melanoma B16F10luc2 and lung adenocarcinoma A549 cells. We identified a mechanosensitive upregulation of pathways involved in cholesterol processing in vitro, leading to an increase in pro-protein convertase subtilisin/kexin type 9 (PCSK9) and LDLR expression, a decrease in intracellular cholesterol and preservation of cell stiffness. A course of mechanical ventilation in mice harbouring melanoma implants increased brain and kidney metastases 2 weeks later. Blockade of PCSK9 using a monoclonal antibody increased cell cholesterol and stiffness and decreased cell invasiveness in vitro and metastasis in vivo. In patients, mechanical ventilation increased PCSK9 abundance in lung tumours and the incidence of metastasis, thus decreasing survival. CONCLUSIONS: Our results suggest that mechanical stretch promote invasiveness of cancer cells, which may have clinically relevant consequences. Pharmacological manipulation of cholesterol endocytosis could be a novel therapeutic target in this setting.


Asunto(s)
Adenocarcinoma , Colesterol , Neoplasias Pulmonares , Melanoma , Proproteína Convertasa 9 , Respiración Artificial , Células A549 , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Animales , Colesterol/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Melanoma/metabolismo , Melanoma/patología , Ratones , Proproteína Convertasa 9/genética , Proproteína Convertasa 9/metabolismo , Receptores de LDL/metabolismo , Respiración Artificial/efectos adversos
13.
J Med Virol ; 94(8): 3589-3595, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35355278

RESUMEN

Furin is a protease that plays a key role in the infection cycle of SARS-CoV-2 by cleaving the viral proteins during the virus particle assembly. In addition, Furin regulates several physiological processes related to cardio-metabolic traits. DNA variants in the FURIN gene are candidates to regulate the risk of developing these traits as well as the susceptibility to severe COVID-19. We genotyped two functional FURIN variants (rs6224/rs4702) in 428 COVID-19 patients in the intensive care unit. The association with death (N = 106) and hypertension, diabetes, and hyperlipidaemia was statistically evaluated. The risk of death was associated with age, hypertension, and hypercholesterolemia. The two FURIN alleles linked to higher expression (rs6224 T and rs4702 A) were significantly increased in the death cases (odds ratio= 1.40 and 1.43). Homozygosis for the two high expression genotypes (rs6224 TT and rs4702 AA) and for the T-A haplotype was associated with an increased risk of hypercholesterolemia. In the multiple logistic regression both, hypercholesterolemia and the TT + AA genotype were significantly associated with death. In conclusion, besides its association with hypercholesterolemia, FURIN variants might be independent risk factors for the risk of death among COVID-19 patients.


Asunto(s)
COVID-19 , Hipercolesterolemia , Hipertensión , COVID-19/genética , Furina/genética , Furina/metabolismo , Humanos , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus
14.
Am J Respir Crit Care Med ; 204(2): 187-196, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-33751920

RESUMEN

Rationale: Acute respiratory failure (ARF) is associated with high mortality in immunocompromised patients, particularly when invasive mechanical ventilation is needed. Therefore, noninvasive oxygenation/ventilation strategies have been developed to avoid intubation, with uncertain impact on mortality, especially when intubation is delayed. Objectives: We sought to report trends of survival over time in immunocompromised patients receiving invasive mechanical ventilation. The impact of delayed intubation after failure of noninvasive strategies was also assessed. Methods: Systematic review and meta-analysis using individual patient data of studies that focused on immunocompromised adult patients with ARF requiring invasive mechanical ventilation. Studies published in English were identified through PubMed, Web of Science, and Cochrane Central (2008-2018). Individual patient data were requested from corresponding authors for all identified studies. We used mixed-effect models to estimate the effect of delayed intubation on hospital mortality and described mortality rates over time. Measurements and Main Results: A total of 11,087 patients were included (24 studies, three controlled trials, and 21 cohorts), of whom 7,736 (74%) were intubated within 24 hours of ICU admission (early intubation). The crude mortality rate was 53.2%. Adjusted survivals improved over time (from 1995 to 2017, odds ratio [OR] for hospital mortality per year, 0.96 [0.95-0.97]). For each elapsed day between ICU admission and intubation, mortality was higher (OR, 1.38 [1.26-1.52]; P < 0.001). Early intubation was significantly associated with lower mortality (OR, 0.83 [0.72-0.96]), regardless of initial oxygenation strategy. These results persisted after propensity score analysis (matched OR associated with delayed intubation, 1.56 [1.44-1.70]). Conclusions: In immunocompromised intubated patients, survival has improved over time. Time between ICU admission and intubation is a strong predictor of mortality, suggesting a detrimental effect of late initial oxygenation failure.


Asunto(s)
Mortalidad Hospitalaria/tendencias , Huésped Inmunocomprometido , Ventilación no Invasiva/mortalidad , Respiración Artificial/mortalidad , Insuficiencia Respiratoria/mortalidad , Insuficiencia Respiratoria/terapia , Adulto , Anciano , Anciano de 80 o más Años , Análisis de Datos , Femenino , Predicción , Humanos , Masculino , Persona de Mediana Edad , Ventilación no Invasiva/métodos , Oportunidad Relativa , Puntaje de Propensión , Respiración Artificial/métodos
15.
Cytokine ; 137: 155354, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33113474

RESUMEN

BACKGROUND AND AIMS: The interferon-induced transmembrane proteins play an important antiviral role by preventing viruses from traversing the cellular lipid bilayer. IFITM3 gene variants have been associated with the clinical response to influenza and other viruses. Our aim was to determine whether the IFITM3 rs12252 polymorphism was associated with the risk of developing severe symptoms of COVID-19 in our population. METHODS: A total of 288 COVID-19 patients who required hospitalization (81 in the intensive care unit) and 440 age matched controls were genotyped with a Taqman assay. Linear regression models were used to compare allele and genotype frequencies between the groups, correcting for age and sex. RESULTS: Carriers of the minor allele frequency (rs12252 C) were significantly more frequent in the patients compared to controls after correcting by age and sex (p = 0.01, OR = 2.02, 95%CI = 1.19-3.42). This genotype was non-significantly more common among patients who required ICU. CONCLUSIONS: The IFITM3 rs12252 C allele was a risk factor for COVID-19 hospitalization in our Caucasian population. The extent of the association was lower than the reported among Chinese, a population with a much higher frequency of the risk allele.


Asunto(s)
Pueblo Asiatico/genética , COVID-19/genética , Proteínas de la Membrana/genética , Proteínas de Unión al ARN/genética , Población Blanca/genética , Anciano , COVID-19/sangre , COVID-19/epidemiología , Femenino , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Modelos Lineales , Masculino , Proteínas de la Membrana/sangre , Persona de Mediana Edad , Polimorfismo Genético , Proteínas de Unión al ARN/sangre , Factores de Riesgo
16.
Crit Care ; 25(1): 331, 2021 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-34517881

RESUMEN

BACKGROUND: Mortality due to COVID-19 is high, especially in patients requiring mechanical ventilation. The purpose of the study is to investigate associations between mortality and variables measured during the first three days of mechanical ventilation in patients with COVID-19 intubated at ICU admission. METHODS: Multicenter, observational, cohort study includes consecutive patients with COVID-19 admitted to 44 Spanish ICUs between February 25 and July 31, 2020, who required intubation at ICU admission and mechanical ventilation for more than three days. We collected demographic and clinical data prior to admission; information about clinical evolution at days 1 and 3 of mechanical ventilation; and outcomes. RESULTS: Of the 2,095 patients with COVID-19 admitted to the ICU, 1,118 (53.3%) were intubated at day 1 and remained under mechanical ventilation at day three. From days 1 to 3, PaO2/FiO2 increased from 115.6 [80.0-171.2] to 180.0 [135.4-227.9] mmHg and the ventilatory ratio from 1.73 [1.33-2.25] to 1.96 [1.61-2.40]. In-hospital mortality was 38.7%. A higher increase between ICU admission and day 3 in the ventilatory ratio (OR 1.04 [CI 1.01-1.07], p = 0.030) and creatinine levels (OR 1.05 [CI 1.01-1.09], p = 0.005) and a lower increase in platelet counts (OR 0.96 [CI 0.93-1.00], p = 0.037) were independently associated with a higher risk of death. No association between mortality and the PaO2/FiO2 variation was observed (OR 0.99 [CI 0.95 to 1.02], p = 0.47). CONCLUSIONS: Higher ventilatory ratio and its increase at day 3 is associated with mortality in patients with COVID-19 receiving mechanical ventilation at ICU admission. No association was found in the PaO2/FiO2 variation.


Asunto(s)
COVID-19/terapia , Respiración Artificial/métodos , Síndrome de Dificultad Respiratoria/terapia , Relación Ventilacion-Perfusión/fisiología , Anciano , Anciano de 80 o más Años , COVID-19/epidemiología , COVID-19/fisiopatología , Estudios de Cohortes , Cuidados Críticos/métodos , Cuidados Críticos/tendencias , Femenino , Mortalidad Hospitalaria/tendencias , Humanos , Unidades de Cuidados Intensivos/tendencias , Masculino , Persona de Mediana Edad , Pronóstico , Estudios Prospectivos , Ventilación Pulmonar/fisiología , Respiración Artificial/tendencias , Síndrome de Dificultad Respiratoria/epidemiología , Síndrome de Dificultad Respiratoria/fisiopatología , Estudios Retrospectivos , España/epidemiología
17.
Br J Anaesth ; 127(4): 648-659, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34340836

RESUMEN

Mechanical ventilation induces a number of systemic responses for which the brain plays an essential role. During the last decade, substantial evidence has emerged showing that the brain modifies pulmonary responses to physical and biological stimuli by various mechanisms, including the modulation of neuroinflammatory reflexes and the onset of abnormal breathing patterns. Afferent signals and circulating factors from injured peripheral tissues, including the lung, can induce neuronal reprogramming, potentially contributing to neurocognitive dysfunction and psychological alterations seen in critically ill patients. These impairments are ubiquitous in the presence of positive pressure ventilation. This narrative review summarises current evidence of lung-brain crosstalk in patients receiving mechanical ventilation and describes the clinical implications of this crosstalk. Further, it proposes directions for future research ranging from identifying mechanisms of multiorgan failure to mitigating long-term sequelae after critical illness.


Asunto(s)
Encéfalo/metabolismo , Lesión Pulmonar/fisiopatología , Respiración Artificial/métodos , Animales , Sistema Nervioso Central/metabolismo , Enfermedad Crítica , Humanos , Insuficiencia Multiorgánica/fisiopatología , Respiración con Presión Positiva/métodos
18.
Am J Physiol Lung Cell Mol Physiol ; 319(5): L825-L832, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32936024

RESUMEN

The cellular communication network factor 1 (CCN1) is a matricellular protein that can modulate multiple tissue responses, including inflammation and repair. We have previously shown that adenoviral overexpression of Ccn1 is sufficient to cause acute lung injury in mice. We hypothesized that CCN1 is present in the airspaces of lungs during the acute phase of lung injury, and higher concentrations are associated with acute respiratory distress syndrome (ARDS) severity. We tested this hypothesis by measuring 1) CCN1 in bronchoalveolar lavage fluid (BALF) and lung homogenates from mice subjected to ventilation-induced lung injury (VILI), 2) Ccn1 gene expression and protein levels in MLE-12 cells (alveolar epithelial cell line) subjected to mechanical stretch, and 3) CCN1 in BALF from mechanically ventilated humans with and without ARDS. BALF CCN1 concentrations and whole lung CCN1 protein levels were significantly increased in mice with VILI (n = 6) versus noninjured controls (n = 6). Ccn1 gene expression and CCN1 protein levels were increased in MLE-12 cells cultured under stretch conditions. Subjects with ARDS (n = 77) had higher BALF CCN1 levels compared with mechanically ventilated subjects without ARDS (n = 45) (P < 0.05). In subjects with ARDS, BALF CCN1 concentrations were associated with higher total protein, sRAGE, and worse [Formula: see text]/[Formula: see text] ratios (all P < 0.05). CCN1 is present in the lungs of mice and humans during the acute inflammatory phase of lung injury, and concentrations are higher in patients with increased markers of severity. Alveolar epithelial cells may be an important source of CCN1 under mechanical stretch conditions.


Asunto(s)
Proteína 61 Rica en Cisteína/metabolismo , Respiración Artificial , Síndrome de Dificultad Respiratoria/metabolismo , Lesión Pulmonar Inducida por Ventilación Mecánica/metabolismo , Lesión Pulmonar Aguda/metabolismo , Animales , Líquido del Lavado Bronquioalveolar/citología , Inflamación/metabolismo , Pulmón/metabolismo , Ratones , Respiración Artificial/métodos
19.
Crit Care Med ; 47(11): e911-e918, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31567350

RESUMEN

OBJECTIVES: Mechanical ventilation can cause ventilator-induced brain injury via afferent vagal signaling and hippocampal neurotransmitter imbalances. The triggering mechanisms for vagal signaling during mechanical ventilation are unknown. The objective of this study was to assess whether pulmonary transient receptor potential vanilloid type-4 (TRPV4) mechanoreceptors and vagal afferent purinergic receptors (P2X) act as triggers of ventilator-induced brain injury. DESIGN: Controlled, human in vitro and ex vivo studies, as well as murine in vivo laboratory studies. SETTING: Research laboratory. SUBJECTS: Wild-type, TRPV4-deficient C57BL/6J mice, 8-10 weeks old. Human postmortem lung tissue and human lung epithelial cell line BEAS-2B. INTERVENTION: Mice subjected to mechanical ventilation were studied using functional MRI to assess hippocampal activity. The effects of lidocaine (a nonselective ion-channel inhibitor), P2X-purinoceptor antagonist (iso-PPADS), or genetic TRPV4 deficiency on hippocampal dopamine-dependent pro-apoptotic signaling were studied in mechanically ventilated mice. Human lung epithelial cells (BEAS-2B) were used to study the effects of mechanical stretch on TRPV4 and P2X expression and activation. TRPV4 levels were measured in postmortem lung tissue from ventilated and nonventilated patients. MEASUREMENTS AND MAIN RESULTS: Hippocampus functional MRI analysis revealed considerable changes in response to the increase in tidal volume during mechanical ventilation. Intratracheal lidocaine, iso-PPADS, and TRPV4 genetic deficiency protected mice against ventilationinduced hippocampal pro-apoptotic signaling. Mechanical stretch in both, BEAS-2B cells and ventilated wild-type mice, resulted in TRPV4 activation and reduced Trpv4 and P2x expression. Intratracheal replenishment of adenosine triphosphate in Trpv4 mice abrogated the protective effect of TRPV4 deficiency. Autopsy lung tissue from ventilated patients showed decreased lung TRPV4 levels compared with nonventilated CONCLUSIONS:: TRPV4 mechanosensors and purinergic receptors are involved in the mechanisms of ventilator-induced brain injury. Inhibition of this neural signaling, either using nonspecific or specific inhibitors targeting the TRPV4/adenosine triphosphate/P2X signaling axis, may represent a novel strategy to prevent or treat ventilator-induced brain injury.


Asunto(s)
Lesiones Encefálicas/etiología , Pulmón/metabolismo , Receptores Purinérgicos P2X/metabolismo , Respiración Artificial/efectos adversos , Anestésicos Locales/farmacología , Animales , Lesiones Encefálicas/prevención & control , Línea Celular , Modelos Animales de Enfermedad , Hipocampo/diagnóstico por imagen , Humanos , Lidocaína/farmacología , Pulmón/patología , Imagen por Resonancia Magnética , Ratones Endogámicos C57BL , Antagonistas del Receptor Purinérgico P2X/farmacología , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo , Volumen de Ventilación Pulmonar
20.
Crit Care ; 23(1): 245, 2019 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-31277722

RESUMEN

BACKGROUND: In critically ill patients, poor patient-ventilator interaction may worsen outcomes. Although sedatives are often administered to improve comfort and facilitate ventilation, they can be deleterious. Whether opioids improve asynchronies with fewer negative effects is unknown. We hypothesized that opioids alone would improve asynchronies and result in more wakeful patients than sedatives alone or sedatives-plus-opioids. METHODS: This prospective multicenter observational trial enrolled critically ill adults mechanically ventilated (MV) > 24 h. We compared asynchronies and sedation depth in patients receiving sedatives, opioids, or both. We recorded sedation level and doses of sedatives and opioids. BetterCare™ software continuously registered ineffective inspiratory efforts during expiration (IEE), double cycling (DC), and asynchrony index (AI) as well as MV modes. All variables were averaged per day. We used linear mixed-effects models to analyze the relationships between asynchronies, sedation level, and sedative and opioid doses. RESULTS: In 79 patients, 14,166,469 breaths were recorded during 579 days of MV. Overall asynchronies were not significantly different in days classified as sedatives-only, opioids-only, and sedatives-plus-opioids and were more prevalent in days classified as no-drugs than in those classified as sedatives-plus-opioids, irrespective of the ventilatory mode. Sedative doses were associated with sedation level and with reduced DC (p < 0.0001) in sedatives-only days. However, on days classified as sedatives-plus-opioids, higher sedative doses and deeper sedation had more IEE (p < 0.0001) and higher AI (p = 0.0004). Opioid dosing was inversely associated with overall asynchronies (p < 0.001) without worsening sedation levels into morbid ranges. CONCLUSIONS: Sedatives, whether alone or combined with opioids, do not result in better patient-ventilator interaction than opioids alone, in any ventilatory mode. Higher opioid dose (alone or with sedatives) was associated with lower AI without depressing consciousness. Higher sedative doses administered alone were associated only with less DC. TRIAL REGISTRATION: ClinicalTrial.gov, NCT03451461.


Asunto(s)
Analgésicos Opioides/uso terapéutico , Hipnóticos y Sedantes/uso terapéutico , Respiración Artificial/métodos , Mecánica Respiratoria/efectos de los fármacos , Anciano , Analgésicos Opioides/efectos adversos , Analgésicos Opioides/farmacología , Enfermedad Crítica/terapia , Femenino , Humanos , Hipnóticos y Sedantes/efectos adversos , Hipnóticos y Sedantes/farmacología , Unidades de Cuidados Intensivos/organización & administración , Unidades de Cuidados Intensivos/estadística & datos numéricos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Respiración Artificial/efectos adversos , Respiración Artificial/instrumentación , España
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA