Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Nature ; 510(7506): 542-6, 2014 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-24847880

RESUMEN

Metformin is considered to be one of the most effective therapeutics for treating type 2 diabetes because it specifically reduces hepatic gluconeogenesis without increasing insulin secretion, inducing weight gain or posing a risk of hypoglycaemia. For over half a century, this agent has been prescribed to patients with type 2 diabetes worldwide, yet the underlying mechanism by which metformin inhibits hepatic gluconeogenesis remains unknown. Here we show that metformin non-competitively inhibits the redox shuttle enzyme mitochondrial glycerophosphate dehydrogenase, resulting in an altered hepatocellular redox state, reduced conversion of lactate and glycerol to glucose, and decreased hepatic gluconeogenesis. Acute and chronic low-dose metformin treatment effectively reduced endogenous glucose production, while increasing cytosolic redox and decreasing mitochondrial redox states. Antisense oligonucleotide knockdown of hepatic mitochondrial glycerophosphate dehydrogenase in rats resulted in a phenotype akin to chronic metformin treatment, and abrogated metformin-mediated increases in cytosolic redox state, decreases in plasma glucose concentrations, and inhibition of endogenous glucose production. These findings were replicated in whole-body mitochondrial glycerophosphate dehydrogenase knockout mice. These results have significant implications for understanding the mechanism of metformin's blood glucose lowering effects and provide a new therapeutic target for type 2 diabetes.


Asunto(s)
Gluconeogénesis/efectos de los fármacos , Glicerolfosfato Deshidrogenasa/antagonistas & inhibidores , Metformina/farmacología , Mitocondrias/enzimología , Animales , Glucemia/análisis , Glucemia/biosíntesis , Células Cultivadas , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/enzimología , Diabetes Mellitus Tipo 2/metabolismo , Glicerolfosfato Deshidrogenasa/deficiencia , Glicerolfosfato Deshidrogenasa/genética , Glicerolfosfato Deshidrogenasa/metabolismo , Humanos , Hipoglucemiantes/farmacología , Insulina/metabolismo , Secreción de Insulina , Ácido Láctico/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones Noqueados , Oxidación-Reducción/efectos de los fármacos , Ratas , Ratas Sprague-Dawley
2.
J Biol Chem ; 289(6): 3294-306, 2014 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-24338010

RESUMEN

NPP4 is a type I extracellular membrane protein on brain vascular endothelium inducing platelet aggregation via the hydrolysis of Ap3A, whereas NPP1 is a type II extracellular membrane protein principally present on the surface of chondrocytes that regulates tissue mineralization. To understand the metabolism of purinergic signals resulting in the physiologic activities of the two enzymes, we report the high resolution crystal structure of human NPP4 and explore the molecular basis of its substrate specificity with NPP1. Both enzymes cleave Ap3A, but only NPP1 can hydrolyze ATP. Comparative structural analysis reveals a tripartite lysine claw in NPP1 that stabilizes the terminal phosphate of ATP, whereas the corresponding region of NPP4 contains features that hinder this binding orientation, thereby inhibiting ATP hydrolysis. Furthermore, we show that NPP1 is unable to induce platelet aggregation at physiologic concentrations reported in human blood, but it could stimulate platelet aggregation if localized at low nanomolar concentrations on vascular endothelium. The combined studies expand our understanding of NPP1 and NPP4 substrate specificity and range and provide a rational mechanism by which polymorphisms in NPP1 confer stroke resistance.


Asunto(s)
Adenosina Trifosfato/química , Fosfatos de Dinucleósidos/química , Hidrolasas Diéster Fosfóricas/química , Pirofosfatasas/química , Accidente Cerebrovascular/enzimología , Adenosina Trifosfato/genética , Adenosina Trifosfato/metabolismo , Plaquetas/enzimología , Plaquetas/patología , Encéfalo/enzimología , Encéfalo/patología , Fosfatos de Dinucleósidos/genética , Fosfatos de Dinucleósidos/metabolismo , Endotelio Vascular/enzimología , Endotelio Vascular/patología , Endotelio Vascular/fisiología , Humanos , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Agregación Plaquetaria/genética , Polimorfismo Genético , Estructura Terciaria de Proteína , Pirofosfatasas/genética , Pirofosfatasas/metabolismo , Accidente Cerebrovascular/genética , Accidente Cerebrovascular/patología , Especificidad por Sustrato
3.
Blood ; 120(22): 4432-40, 2012 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-22995898

RESUMEN

Ap3A is a platelet-dense granule component released into the extracellular space during the second wave of platelet aggregation on activation. Here, we identify an uncharacterized enzyme, nucleotide pyrophosphatase/phosphodiesterase-4 (NPP4), as a potent hydrolase of Ap3A capable of stimulating platelet aggregation and secretion. We demonstrate that NPP4 is present on the surface of vascular endothelium, where it hydrolyzes Ap3A into AMP and ADP, and Ap4A into AMP and ATP. Platelet aggregation assays with citrated platelet-rich plasma reveal that the primary and secondary waves of aggregation and dense granule release are strongly induced by nanomolar NPP4 in a concentration-dependent manner in the presence of Ap3A, while Ap3A alone initiates a primary wave of aggregation followed by rapid disaggregation. NPP2 and an active site NPP4 mutant, neither of which appreciably hydrolyzes Ap3A, have no effect on platelet aggregation and secretion. Finally, by using ADP receptor blockade we confirm that NPP4 mediates platelet aggregation via release of ADP from Ap3A and activation of ADP receptors. Collectively, these studies define the biologic and enzymatic basis for NPP4 and Ap3A activity in platelet aggregation in vitro and suggest that NPP4 promotes hemostasis in vivo by augmenting ADP-mediated platelet aggregation at the site of vascular injury.


Asunto(s)
Coagulación Sanguínea , Endotelio Vascular/enzimología , Hidrolasas Diéster Fosfóricas/fisiología , Pirofosfatasas/fisiología , Adenosina Difosfato/metabolismo , Adulto , Animales , Coagulación Sanguínea/efectos de los fármacos , Coagulación Sanguínea/fisiología , Coagulantes/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/farmacología , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/fisiología , Fosfatos de Dinucleósidos/metabolismo , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/lesiones , Endotelio Vascular/metabolismo , Técnica del Anticuerpo Fluorescente , Humanos , Hidrólisis , Técnicas In Vitro , Insectos , Hidrolasas Diéster Fosfóricas/metabolismo , Hidrolasas Diéster Fosfóricas/farmacología , Agregación Plaquetaria/efectos de los fármacos , Agregación Plaquetaria/fisiología , Pirofosfatasas/metabolismo , Pirofosfatasas/farmacología , Distribución Tisular
4.
J Biol Chem ; 286(34): 30130-41, 2011 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-21719699

RESUMEN

Autotaxin (ATX) is a secreted lysophospholipase D that hydrolyzes lysophosphatidylcholine (LPC) into lysophosphatidic acid (LPA), initiating signaling cascades leading to cancer metastasis, wound healing, and angiogenesis. Knowledge of the pathway and kinetics of LPA synthesis by ATX is critical for developing quantitative physiological models of LPA signaling. We measured the individual rate constants and pathway of the LPA synthase cycle of ATX using the fluorescent lipid substrates FS-3 and 12-(N-methyl-N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl))-LPC. FS-3 binds rapidly (k(1) ≥500 µm(-1) s(-1)) and is hydrolyzed slowly (k(2) = 0.024 s(-1)). Release of the first hydrolysis product is random and rapid (≥1 s(-1)), whereas release of the second is slow and rate-limiting (0.005-0.007 s(-1)). Substrate binding and hydrolysis are slow and rate-limiting with LPC. Product release is sequential with choline preceding LPA. The catalytic pathway and kinetics depend strongly on the substrate, suggesting that ATX kinetics could vary for the various in vivo substrates. Slow catalysis with LPC reveals the potential for LPA signaling to spread to cells distal to the site of LPC substrate binding by ATX. An ATX mutant in which catalytic threonine at position 210 is replaced with alanine binds substrate weakly, favoring a role for Thr-210 in binding as well as catalysis. FTY720P, the bioactive form of a drug currently used to treat multiple sclerosis, inhibits ATX in an uncompetitive manner and slows the hydrolysis reaction, suggesting that ATX inhibition plays a significant role in lymphocyte immobilization in FTY720P-based therapeutics.


Asunto(s)
Lisofosfolípidos/química , Complejos Multienzimáticos/química , Fosfodiesterasa I/química , Pirofosfatasas/química , Sustitución de Aminoácidos , Catálisis , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/uso terapéutico , Hidrólisis , Cinética , Lisofosfolípidos/genética , Lisofosfolípidos/metabolismo , Complejos Multienzimáticos/antagonistas & inhibidores , Complejos Multienzimáticos/genética , Complejos Multienzimáticos/metabolismo , Esclerosis Múltiple/tratamiento farmacológico , Mutación Missense , Organofosfatos/química , Organofosfatos/uso terapéutico , Fosfodiesterasa I/antagonistas & inhibidores , Fosfodiesterasa I/genética , Fosfodiesterasa I/metabolismo , Hidrolasas Diéster Fosfóricas , Pirofosfatasas/antagonistas & inhibidores , Pirofosfatasas/genética , Pirofosfatasas/metabolismo , Esfingosina/análogos & derivados , Esfingosina/química , Esfingosina/uso terapéutico , Especificidad por Sustrato/genética
5.
Nat Commun ; 6: 10006, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26624227

RESUMEN

Diseases of ectopic calcification of the vascular wall range from lethal orphan diseases such as generalized arterial calcification of infancy (GACI), to common diseases such as hardening of the arteries associated with aging and calciphylaxis of chronic kidney disease (CKD). GACI is a lethal orphan disease in which infants calcify the internal elastic lamina of their medium and large arteries and expire of cardiac failure as neonates, while calciphylaxis of CKD is a ubiquitous vascular calcification in patients with renal failure. Both disorders are characterized by vascular Mönckeburg's sclerosis accompanied by decreased concentrations of plasma inorganic pyrophosphate (PPi). Here we demonstrate that subcutaneous administration of an ENPP1-Fc fusion protein prevents the mortality, vascular calcifications and sequela of disease in animal models of GACI, and is accompanied by a complete clinical and biomarker response. Our findings have implications for the treatment of rare and common diseases of ectopic vascular calcification.


Asunto(s)
Enfermedades del Recién Nacido/enzimología , Enfermedades del Recién Nacido/prevención & control , Hidrolasas Diéster Fosfóricas/metabolismo , Pirofosfatasas/metabolismo , Calcificación Vascular/enzimología , Calcificación Vascular/prevención & control , Animales , Arterias/enzimología , Arterias/patología , Modelos Animales de Enfermedad , Femenino , Humanos , Fragmentos Fc de Inmunoglobulinas/administración & dosificación , Fragmentos Fc de Inmunoglobulinas/genética , Fragmentos Fc de Inmunoglobulinas/metabolismo , Inmunoglobulina G/genética , Inmunoglobulina G/metabolismo , Recién Nacido , Enfermedades del Recién Nacido/genética , Enfermedades del Recién Nacido/mortalidad , Masculino , Ratones Endogámicos C57BL , Hidrolasas Diéster Fosfóricas/administración & dosificación , Hidrolasas Diéster Fosfóricas/genética , Pirofosfatasas/administración & dosificación , Pirofosfatasas/genética , Calcificación Vascular/genética , Calcificación Vascular/mortalidad
6.
J Biol Chem ; 282(48): 35046-55, 2007 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-17932047

RESUMEN

The KtrAB ion transporter is a complex of two proteins, KtrB and KtrA. The integral membrane protein KtrB is expected to adopt the structural architecture typified by the pore domain of potassium channels. Here we show that homo-dimerization of KtrB proteins is most likely a general property of this family of transporters. Using cysteine mutants and bifunctional cross-linkers we define regions of the Bacillus subtilis KtrB molecule that are close to the molecular 2-fold axis and to the dimer interface. Fitting of the cross-linking data to a potassium channel-like model suggests structural similarities between potassium channels and KtrB proteins in the extracellular half of the molecule and differences in the cytoplasmic regions.


Asunto(s)
Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas de Transporte de Catión/metabolismo , Secuencia de Aminoácidos , Bacillus/metabolismo , Reactivos de Enlaces Cruzados/farmacología , Cisteína/química , Citoplasma/metabolismo , Dimerización , Conformación Molecular , Datos de Secuencia Molecular , Mutación , Potasio/química , Canales de Potasio/química , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Streptococcus pneumoniae/metabolismo
7.
Cell ; 126(6): 1147-59, 2006 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-16990138

RESUMEN

The KtrAB ion transporter is a complex of the KtrB membrane protein and KtrA, an RCK domain. RCK domains regulate eukaryotic and prokaryotic membrane proteins involved in K(+) transport. Conflicting functional models have proposed two different oligomeric arrangements for RCK domains, tetramer versus octamer. Our results for the KtrAB RCK domain clearly show an octamer in solution and in the crystal. We determined the structure of this protein in three different octameric ring conformations that resemble the RCK-domain octamer observed in the MthK potassium channel but show striking differences in size and symmetry. We present experimental evidence for the association between one RCK octameric ring and two KtrB membrane proteins. These results provide insights into the quaternary organization of the KtrAB transporter and its mechanism of activation and show that the RCK-domain octameric ring model is generally applicable to other ion-transport systems.


Asunto(s)
Bacterias/metabolismo , Proteínas Bacterianas/química , Proteínas de Transporte de Catión/química , Membrana Celular/metabolismo , Proteínas de la Membrana/química , Potasio/metabolismo , Cristalografía por Rayos X , Modelos Moleculares , Conformación Proteica , Estructura Terciaria de Proteína/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA