Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 186(5): 1050-1065.e19, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36750094

RESUMEN

Chromatin landscapes are disrupted during DNA replication and must be restored faithfully to maintain genome regulation and cell identity. The histone H3-H4 modification landscape is restored by parental histone recycling and modification of new histones. How DNA replication impacts on histone H2A-H2B is currently unknown. Here, we measure H2A-H2B modifications and H2A.Z during DNA replication and across the cell cycle using quantitative genomics. We show that H2AK119ub1, H2BK120ub1, and H2A.Z are recycled accurately during DNA replication. Modified H2A-H2B are segregated symmetrically to daughter strands via POLA1 on the lagging strand, but independent of H3-H4 recycling. Post-replication, H2A-H2B modification and variant landscapes are quickly restored, and H2AK119ub1 guides accurate restoration of H3K27me3. This work reveals epigenetic transmission of parental H2A-H2B during DNA replication and identifies cross talk between H3-H4 and H2A-H2B modifications in epigenome propagation. We propose that rapid short-term memory of recycled H2A-H2B modifications facilitates restoration of stable H3-H4 chromatin states.


Asunto(s)
Cromatina , Memoria a Corto Plazo , Ciclo Celular , Replicación del ADN , Histonas/metabolismo , Nucleosomas , Animales , Ratones , Conejos
2.
Nucleic Acids Res ; 50(4): 2111-2127, 2022 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-35166831

RESUMEN

Transposable elements are an abundant source of transcription factor binding sites, and favorable genomic integration may lead to their recruitment by the host genome for gene regulatory functions. However, it is unclear how frequent co-option of transposable elements as regulatory elements is, to which regulatory programs they contribute and how they compare to regulatory elements devoid of transposable elements. Here, we report a transcription initiation-centric, in-depth characterization of the transposon-derived regulatory landscape of mouse embryonic stem cells. We demonstrate that a substantial number of transposable element insertions, in particular endogenous retroviral elements, are associated with open chromatin regions that are divergently transcribed into unstable RNAs in a cell-type specific manner, and that these elements contribute to a sizable proportion of active enhancers and gene promoters. We further show that transposon subfamilies contribute differently and distinctly to the pluripotency regulatory program through their repertoires of transcription factor binding site sequences, shedding light on the formation of regulatory programs and the origins of regulatory elements.


Asunto(s)
Retrovirus Endógenos , Animales , Elementos Transponibles de ADN/genética , Células Madre Embrionarias/metabolismo , Retrovirus Endógenos/genética , Retrovirus Endógenos/metabolismo , Ratones , Secuencias Reguladoras de Ácidos Nucleicos/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
Int J Mol Sci ; 25(12)2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38928478

RESUMEN

Hereditary breast and ovarian cancer (HBOC) syndrome is a genetic condition that increases the risk of breast cancer by 80% and that of ovarian cancer by 40%. The most common pathogenic variants (PVs) causing HBOC occur in the BRCA1 gene, with more than 3850 reported mutations in the gene sequence. The prevalence of specific PVs in BRCA1 has increased across populations due to the effect of founder mutations. Therefore, when a founder mutation is identified, it becomes key to improving cancer risk characterization and effective screening protocols. The only founder mutation described in the Mexican population is the deletion of exons 9 to 12 of BRCA1 (BRCA1Δ9-12), and its description focuses on the gene sequence, but no transcription profiles have been generated for individuals who carry this gene. In this study, we describe the transcription profiles of cancer patients and healthy individuals who were heterozygous for PV BRCA1Δ9-12 by analyzing the differential expression of both alleles compared with the homozygous BRCA1 control group using RT-qPCR, and we describe the isoforms produced by the BRCA1 wild-type and BRCA1Δ9-12 alleles using nanopore long-sequencing. Using the Kruskal-Wallis test, our results showed a similar transcript expression of the wild-type allele between the healthy heterozygous group and the homozygous BRCA1 control group. An association between the recurrence and increased expression of both alleles in HBOC patients was also observed. An analysis of the sequences indicated four wild-type isoforms with diagnostic potential for discerning individuals who carry the PV BRCA1Δ9-12 and identifying which of them has developed cancer.


Asunto(s)
Alelos , Proteína BRCA1 , Síndrome de Cáncer de Mama y Ovario Hereditario , Humanos , Proteína BRCA1/genética , Femenino , Síndrome de Cáncer de Mama y Ovario Hereditario/genética , Persona de Mediana Edad , Predisposición Genética a la Enfermedad , Adulto , Efecto Fundador , Exones/genética , Neoplasias de la Mama/genética , Heterocigoto , Mutación , México , Neoplasias Ováricas/genética , Relevancia Clínica
4.
Int J Mol Sci ; 24(22)2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-38003293

RESUMEN

Chemoresistance to standard neoadjuvant treatment commonly occurs in locally advanced breast cancer, particularly in the luminal subtype, which is hormone receptor-positive and represents the most common subtype of breast cancer associated with the worst outcomes. Identifying the genes associated with chemoresistance is crucial for understanding the underlying mechanisms and discovering effective treatments. In this study, we aimed to identify genes linked to neoadjuvant chemotherapy resistance in 62 retrospectively included patients with luminal breast cancer. Whole RNA sequencing of 12 patient biopsies revealed 269 differentially expressed genes in chemoresistant patients. We further validated eight highly correlated genes associated with resistance. Among these, solute carrier family 12 member 1 (SLC12A1) and glutamate ionotropic AMPA type subunit 4 (GRIA4), both implicated in ion transport, showed the strongest association with chemoresistance. Notably, SLC12A1 expression was downregulated, while protein levels of glutamate receptor 4 (GLUR4), encoded by GRIA4, were elevated in patients with a worse prognosis. Our results suggest a potential link between SLC12A1 gene expression and GLUR4 protein levels with chemoresistance in luminal breast cancer. In particular, GLUR4 protein could serve as a potential target for drug intervention to overcome chemoresistance.


Asunto(s)
Neoplasias de la Mama , Femenino , Humanos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Resistencia a Antineoplásicos/genética , Proteínas de Transporte de Membrana , Terapia Neoadyuvante , Estudios Retrospectivos , Miembro 1 de la Familia de Transportadores de Soluto 12
5.
Arch Virol ; 166(11): 3173-3177, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34448936

RESUMEN

SARS-CoV-2 variants emerged in late 2020, and at least three variants of concern (B.1.1.7, B.1.351, and P1) have been reported by WHO. These variants have several substitutions in the spike protein that affect receptor binding; they exhibit increased transmissibility and may be associated with reduced vaccine effectiveness. In the present work, we report the identification of a potential variant of interest, harboring the mutations T478K, P681H, and T732A in the spike protein, within the newly named lineage B.1.1.519, that rapidly outcompeted the preexisting variants in Mexico and has been the dominant virus in the country during the first trimester of 2021.


Asunto(s)
COVID-19/epidemiología , COVID-19/virología , SARS-CoV-2/genética , COVID-19/transmisión , Genoma Viral/genética , Humanos , México/epidemiología , Mutación , Filogenia , Prevalencia , SARS-CoV-2/clasificación , SARS-CoV-2/aislamiento & purificación , Glicoproteína de la Espiga del Coronavirus/genética
7.
Nucleic Acids Res ; 45(16): e151, 2017 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-28934488

RESUMEN

Gene expression profiles have been extensively discussed as an aid to guide the therapy by predicting disease outcome for the patients suffering from complex diseases, such as cancer. However, prediction models built upon single-gene (SG) features show poor stability and performance on independent datasets. Attempts to mitigate these drawbacks have led to the development of network-based approaches that integrate pathway information to produce meta-gene (MG) features. Also, MG approaches have only dealt with the two-class problem of good versus poor outcome prediction. Stratifying patients based on their molecular subtypes can provide a detailed view of the disease and lead to more personalized therapies. We propose and discuss a novel MG approach based on de novo pathways, which for the first time have been used as features in a multi-class setting to predict cancer subtypes. Comprehensive evaluation in a large cohort of breast cancer samples from The Cancer Genome Atlas (TCGA) revealed that MGs are considerably more stable than SG models, while also providing valuable insight into the cancer hallmarks that drive them. In addition, when tested on an independent benchmark non-TCGA dataset, MG features consistently outperformed SG models. We provide an easy-to-use web service at http://pathclass.compbio.sdu.dk where users can upload their own gene expression datasets from breast cancer studies and obtain the subtype predictions from all the classifiers.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias de la Mama/genética , Perfilación de la Expresión Génica/métodos , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/clasificación , Neoplasias de la Mama/metabolismo , Metilación de ADN , Femenino , Genes Relacionados con las Neoplasias , Humanos
8.
Bioconjug Chem ; 29(1): 149-157, 2018 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-29182866

RESUMEN

The combination of copper-free click chemistry with metabolic labeling offers new opportunities in drug delivery. The objective of this study was to determine whether cubosomes functionalized with azide or dibenzocyclooctyne (DBCO) groups are able to undergo copper-free click chemistry with a strained cyclooctyne or azide, respectively. Phytantriol-based cubosomes were functionalized using phospholipids bearing an azide or DBCO group. The modified cubosome dispersions were characterized using dynamic light scattering, cryo-TEM, and small-angle X-ray scattering. The efficiency of "clickability" was assessed by reacting the cubosomes with a complementary dye and determining bound and unbound dye via size exclusion chromatography. The clickable cubosomes reacted specifically and efficiently with a click-Cy5 dye with minor changes to the size, shape, and structure of the cubosomes. This indicates that cubosomes can retain their unique internal structure while participating in copper-free click chemistry. This proof of concept study paves the way for the use of copper-free click chemistry and metabolic labeling with cubosomes for targeted drug delivery and imaging.


Asunto(s)
Azidas/química , Ciclooctanos/química , Portadores de Fármacos/química , Alcoholes Grasos/química , Nanopartículas/química , Fosfolípidos/química , Carbocianinas/administración & dosificación , Química Clic/métodos , Sistemas de Liberación de Medicamentos , Colorantes Fluorescentes/administración & dosificación , Nanopartículas/ultraestructura
9.
Stem Cells ; 35(8): 1898-1912, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28600813

RESUMEN

A limited number of cancer cells within a tumor are thought to have self-renewing and tumor-initiating capabilities that produce the remaining cancer cells in a heterogeneous tumor mass. Elucidation of central pathways preferentially used by tumor-initiating cells/cancer stem cells (CSCs) may allow their exploitation as potential cancer therapy targets. We used single cell cloning to isolate and characterize four isogenic cell clones from a triple-negative breast cancer cell line; two exhibited mesenchymal-like and two epithelial-like characteristics. Within these pairs, one, but not the other, resulted in tumors in immunodeficient NOD/Shi-scid/IL-2 Rγ null mice and efficiently formed mammospheres. Quantitative proteomics and phosphoproteomics were used to map signaling pathways associated with the tumor-initiating ability. Signaling associated with apoptosis was suppressed in tumor-initiating versus nontumorigenic counterparts with pro-apoptotic proteins, such as Bcl2-associated agonist of cell death (BAD), FAS-associated death domain protein (FADD), and myeloid differentiation primary response protein (MYD88), downregulated in tumor-initiating epithelial-like cells. Functional studies confirmed significantly lower apoptosis in tumor-initiating versus nontumorigenic cells. Moreover, central pathways, including ß-catenin and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)-related signaling, exhibited increased activation in the tumor-initiating cells. To evaluate the CSC model as a tool for drug screening, we assessed the effect of separately blocking NF-κB and Wnt/ß-catenin signaling and found markedly reduced mammosphere formation, particularly for tumor-initiating cells. Similar reduction was also observed using patient-derived primary cancer cells. Furthermore, blocking NF-κB signaling in mice transplanted with tumor-initiating cells significantly reduced tumor outgrowth. Our study demonstrates that suppressed apoptosis, activation of pathways associated with cell viability, and CSCs are the major differences between tumor-initiating and nontumorigenic cells independent of their epithelial-like/mesenchymal-like phenotype. These altered pathways may provide targets for future drug development to eliminate CSCs, and the cell model may be a useful tool in such drug screenings. Stem Cells 2017;35:1898-1912.


Asunto(s)
Evaluación Preclínica de Medicamentos , Modelos Biológicos , Células Madre Neoplásicas/patología , Transducción de Señal , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Animales , Antígenos CD/metabolismo , Apoptosis , Biomarcadores de Tumor/metabolismo , Carcinogénesis/metabolismo , Carcinogénesis/patología , Línea Celular Tumoral , Proliferación Celular , Forma de la Célula , Supervivencia Celular , Transición Epitelial-Mesenquimal , Femenino , Humanos , Espectrometría de Masas , Ratones , Mapas de Interacción de Proteínas , Proteómica , Reproducibilidad de los Resultados , Esferoides Celulares/patología , Vía de Señalización Wnt
10.
Nucleic Acids Res ; 44(W1): W98-W104, 2016 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-27150809

RESUMEN

We present KeyPathwayMinerWeb, the first online platform for de novo pathway enrichment analysis directly in the browser. Given a biological interaction network (e.g. protein-protein interactions) and a series of molecular profiles derived from one or multiple OMICS studies (gene expression, for instance), KeyPathwayMiner extracts connected sub-networks containing a high number of active or differentially regulated genes (proteins, metabolites) in the molecular profiles. The web interface at (http://keypathwayminer.compbio.sdu.dk) implements all core functionalities of the KeyPathwayMiner tool set such as data integration, input of background knowledge, batch runs for parameter optimization and visualization of extracted pathways. In addition to an intuitive web interface, we also implemented a RESTful API that now enables other online developers to integrate network enrichment as a web service into their own platforms.


Asunto(s)
Biología Computacional/métodos , Redes Reguladoras de Genes , Proteína Huntingtina/genética , Enfermedad de Huntington/genética , Interfaz Usuario-Computador , Estudios de Casos y Controles , Biología Computacional/estadística & datos numéricos , Conjuntos de Datos como Asunto , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Humanos , Enfermedad de Huntington/diagnóstico , Internet , Mapeo de Interacción de Proteínas
11.
Mult Scler ; 22(9): 1192-201, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-26514978

RESUMEN

BACKGROUND: Neuromyelitis optica (NMO)-systemic lupus erythematosus (SLE) association is a rare condition characterized by multiple autoantibodies. OBJECTIVE: To examine if, during the evolution of NMO, anti-AQP4 responses are part of polyclonal B cell activation, and if T cell responses contribute. METHODS: In 19 samples of six patients who developed NMO during SLE, we examined the correlation of AQP4-IgG1 and IgM with (i) anti-MOG IgG and IgM, (ii) anti-nuclear, anti-nucleosome and anti-dsDNA IgG antibodies, (iii) cytokines and chemokines in the serum and (iv) longitudinal relation to NMO relapses/remission. RESULTS: AQP4-IgG1 was present 1-2-5 years before the first NMO relapse. During relapse, AQP4-IgG1, ANA, anti-dsDNA and anti-nucleosome antibodies were elevated. Anti-MOG IgG/IgM and AQP4-IgM antibodies were not detected. AQP4-IgG1 antibodies correlated with concentration of anti-nucleosome, IFN-γ,interferon-gamma-induced CCL10/IP-10 and CCL17/TARC (p<0.05, respectively). CCL17/TARC correlated with levels of anti-nucleosome and anti-dsDNA (p<0.05, respectively). Compared to healthy subjects, concentration of IFN-γ and CCL17/TARC was higher in NMO/SLE (p<0.05). CONCLUSIONS: AQP4-IgG1 antibodies are present in the sera years before the first NMO attack in patients with SLE; elevation of anti-AQP4 is part of a polyclonal B cell response during NMO relapses; in spite of multiple autoantibodies in the serum, MOG antibodies were not present; Th1 responses accompany autoantibody responses in NMO/SLE.


Asunto(s)
Acuaporina 4/inmunología , Autoanticuerpos/sangre , Citocinas/sangre , Inmunoglobulina G/sangre , Inmunoglobulina M/sangre , Lupus Eritematoso Sistémico/inmunología , Neuromielitis Óptica/inmunología , Adolescente , Adulto , Linfocitos B/inmunología , Linfocitos B/metabolismo , Biomarcadores/sangre , Niño , Femenino , Humanos , Inmunosupresores/uso terapéutico , Lupus Eritematoso Sistémico/sangre , Lupus Eritematoso Sistémico/diagnóstico , Lupus Eritematoso Sistémico/tratamiento farmacológico , Activación de Linfocitos , Persona de Mediana Edad , Neuromielitis Óptica/sangre , Neuromielitis Óptica/diagnóstico , Neuromielitis Óptica/tratamiento farmacológico , Datos Preliminares , Recurrencia , Inducción de Remisión , Estudios Retrospectivos , Células TH1/inmunología , Células TH1/metabolismo , Células Th17/inmunología , Células Th17/metabolismo , Factores de Tiempo , Resultado del Tratamiento , Adulto Joven
12.
Arch Med Res ; 55(5): 103014, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38861840

RESUMEN

The rise in life expectancy has significantly increased the occurrence of age-related chronic diseases, leading to escalating expenses for both society and individuals. Among the main factors influencing health and lifespan, lifestyle takes a forefront position. Specifically, nutrition, mental activity, and physical exercise influence the molecular and functional mechanisms that contribute to the prevention of major age-related diseases. Gaining deeper insights into the mechanisms that drive the positive effects of healthy lifestyles is valuable for creating interventions to prevent or postpone the development of chronic degenerative diseases. This review summarizes the main mechanisms that underlie the positive effect of lifestyle factors in counteracting the major age-related diseases involving brain health, musculoskeletal function, cancer, frailty, and cardiovascular diseases, among others. This knowledge will help to identify high-risk populations for targeted intervention trials and discover new biomarkers associated with healthy aging.

13.
Nat Genet ; 55(9): 1567-1578, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37666988

RESUMEN

Modified parental histones are segregated symmetrically to daughter DNA strands during replication and can be inherited through mitosis. How this may sustain the epigenome and cell identity remains unknown. Here we show that transmission of histone-based information during DNA replication maintains epigenome fidelity and embryonic stem cell plasticity. Asymmetric segregation of parental histones H3-H4 in MCM2-2A mutants compromised mitotic inheritance of histone modifications and globally altered the epigenome. This included widespread spurious deposition of repressive modifications, suggesting elevated epigenetic noise. Moreover, H3K9me3 loss at repeats caused derepression and H3K27me3 redistribution across bivalent promoters correlated with misexpression of developmental genes. MCM2-2A mutation challenged dynamic transitions in cellular states across the cell cycle, enhancing naïve pluripotency and reducing lineage priming in G1. Furthermore, developmental competence was diminished, correlating with impaired exit from pluripotency. Collectively, this argues that epigenetic inheritance of histone modifications maintains a correctly balanced and dynamic chromatin landscape able to support mammalian cell differentiation.


Asunto(s)
Epigenoma , Histonas , Animales , Histonas/genética , Cromatina/genética , Células Madre Embrionarias , Mitosis , Mamíferos
14.
Elife ; 112022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36377861

RESUMEN

Genetic and environmental exposures cause variability in gene expression. Although most genes are affected in a population, their effect sizes vary greatly, indicating the existence of regulatory mechanisms that could amplify or attenuate expression variability. Here, we investigate the relationship between the sequence and transcription start site architectures of promoters and their expression variability across human individuals. We find that expression variability can be largely explained by a promoter's DNA sequence and its binding sites for specific transcription factors. We show that promoter expression variability reflects the biological process of a gene, demonstrating a selective trade-off between stability for metabolic genes and plasticity for responsive genes and those involved in signaling. Promoters with a rigid transcription start site architecture are more prone to have variable expression and to be associated with genetic variants with large effect sizes, while a flexible usage of transcription start sites within a promoter attenuates expression variability and limits genotypic effects. Our work provides insights into the variable nature of responsive genes and reveals a novel mechanism for supplying transcriptional and mutational robustness to essential genes through multiple transcription start site regions within a promoter.


Asunto(s)
Factores de Transcripción , Transcripción Genética , Humanos , Secuencia de Bases , Regiones Promotoras Genéticas , Factores de Transcripción/metabolismo , Sitios de Unión , Mutación
15.
Cancers (Basel) ; 14(9)2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35565196

RESUMEN

Despite having a favorable response to platinum-based chemotherapies, ~15% of Testicular Germ-Cell Tumor (TGCT) patients are platinum-resistant. Mortality rates among Latin American countries have remained constant over time, which makes the study of this population of particular interest. To gain insight into this phenomenon, we conducted whole-exome sequencing, microarray-based comparative genomic hybridization, and copy number analysis of 32 tumors from a Mexican cohort, of which 18 were platinum-sensitive and 14 were platinum-resistant. We incorporated analyses of mutational burden, driver mutations, and SNV and CNV signatures. DNA breakpoints in genes were also investigated and might represent an interesting research opportunity. We observed that sensitivity to chemotherapy does not seem to be explained by any of the mutations detected. Instead, we uncovered CNVs, particularly amplifications on segment 2q11.1 as a novel variant with chemosensitivity biomarker potential. Our data shed light into understanding platinum resistance in a Latin-origin population.

16.
FEBS J ; 289(7): 1858-1875, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34739170

RESUMEN

Cell cycle progression requires control of the abundance of several proteins and RNAs over space and time to properly transit from one phase to the next and to ensure faithful genomic inheritance in daughter cells. The proteasome, the main protein degradation system of the cell, facilitates the establishment of a proteome specific to each phase of the cell cycle. Its activity also strongly influences transcription. Here, we detected the upregulation of repetitive RNAs upon proteasome inhibition in human cancer cells using RNA-seq. The effect of proteasome inhibition on centromeres was remarkable, especially on α-Satellite RNAs. We showed that α-Satellite RNAs fluctuate along the cell cycle and interact with members of the cohesin ring, suggesting that these transcripts may take part in the regulation of mitotic progression. Next, we forced exogenous overexpression and used gapmer oligonucleotide targeting to demonstrate that α-Sat RNAs have regulatory roles in mitosis. Finally, we explored the transcriptional regulation of α-Satellite DNA. Through in silico analyses, we detected the presence of CCAAT transcription factor-binding motifs within α-Satellite centromeric arrays. Using high-resolution three-dimensional immuno-FISH and ChIP-qPCR, we showed an association between the α-Satellite upregulation and the recruitment of the transcription factor NFY-A to the centromere upon MG132-induced proteasome inhibition. Together, our results show that the proteasome controls α-Satellite RNAs associated with the regulation of mitosis.


Asunto(s)
Complejo de la Endopetidasa Proteasomal , Satélite de ARN , Centrómero/genética , Centrómero/metabolismo , ADN Satélite/genética , Humanos , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Satélite de ARN/genética , Regulación hacia Arriba
17.
NPJ Syst Biol Appl ; 7(1): 21, 2021 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-34031419

RESUMEN

COVID-19 is an infection caused by SARS-CoV-2 (Severe Acute Respiratory Syndrome coronavirus 2), which has caused a global outbreak. Current research efforts are focused on the understanding of the molecular mechanisms involved in SARS-CoV-2 infection in order to propose drug-based therapeutic options. Transcriptional changes due to epigenetic regulation are key host cell responses to viral infection and have been studied in SARS-CoV and MERS-CoV; however, such changes are not fully described for SARS-CoV-2. In this study, we analyzed multiple transcriptomes obtained from cell lines infected with MERS-CoV, SARS-CoV, and SARS-CoV-2, and from COVID-19 patient-derived samples. Using integrative analyses of gene co-expression networks and de-novo pathway enrichment, we characterize different gene modules and protein pathways enriched with Transcription Factors or Epifactors relevant for SARS-CoV-2 infection. We identified EP300, MOV10, RELA, and TRIM25 as top candidates, and more than 60 additional proteins involved in the epigenetic response during viral infection that has therapeutic potential. Our results show that targeting the epigenetic machinery could be a feasible alternative to treat COVID-19.


Asunto(s)
COVID-19/genética , Epigénesis Genética/genética , SARS-CoV-2/genética , Transcriptoma/genética , COVID-19/virología , Perfilación de la Expresión Génica , Humanos , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética , Coronavirus del Síndrome Respiratorio de Oriente Medio/patogenicidad , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/genética , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/patogenicidad , SARS-CoV-2/patogenicidad , Transducción de Señal/genética
18.
J Mol Diagn ; 23(10): 1306-1323, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34358678

RESUMEN

Breast cancer is one of the leading causes of mortality in women worldwide, and neoadjuvant chemotherapy has emerged as an option for the management of locally advanced breast cancer. Extensive efforts have been made to identify new molecular markers to predict the response to neoadjuvant chemotherapy. Transcripts that do not encode proteins, termed long noncoding RNAs (lncRNAs), have been shown to display abnormal expression profiles in different types of cancer, but their role as biomarkers in response to neoadjuvant chemotherapy has not been extensively studied. Herein, lncRNA expression was profiled using RNA sequencing in biopsies from patients who subsequently showed either response or no response to treatment. GATA3-AS1 was overexpressed in the nonresponder group and was the most stable feature when performing selection in multiple random forest models. GATA3-AS1 was experimentally validated by quantitative RT-PCR in an extended group of 68 patients. Expression analysis confirmed that GATA3-AS1 is overexpressed primarily in patients who were nonresponsive to neoadjuvant chemotherapy, with a sensitivity of 92.9% and a specificity of 75.0%. The statistical model was based on luminal B-like patients and adjusted by menopausal status and phenotype (odds ratio, 37.49; 95% CI, 6.74-208.42; P = 0.001); GATA3-AS1 was established as an independent predictor of response. Thus, lncRNA GATA3-AS1 is proposed as a potential predictive biomarker of nonresponse to neoadjuvant chemotherapy.


Asunto(s)
Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/genética , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Resistencia a Antineoplásicos/genética , Factor de Transcripción GATA3/genética , Terapia Neoadyuvante/métodos , ARN sin Sentido/genética , ARN Largo no Codificante/genética , Transcriptoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Adulto , Biomarcadores de Tumor/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Estudios de Cohortes , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Células MCF-7 , Persona de Mediana Edad , Pronóstico , RNA-Seq/métodos , Receptor ErbB-2/metabolismo , Resultado del Tratamiento
19.
Viruses ; 13(11)2021 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-34834987

RESUMEN

The SARS-CoV-2 pandemic is one of the most concerning health problems around the globe. We reported the emergence of SARS-CoV-2 variant B.1.1.519 in Mexico City. We reported the effective reproduction number (Rt) of B.1.1.519 and presented evidence of its geographical origin based on phylogenetic analysis. We also studied its evolution via haplotype analysis and identified the most recurrent haplotypes. Finally, we studied the clinical impact of B.1.1.519. The B.1.1.519 variant was predominant between November 2020 and May 2021, reaching 90% of all cases sequenced in February 2021. It is characterized by three amino acid changes in the spike protein: T478K, P681H, and T732A. Its Rt varies between 0.5 and 2.9. Its geographical origin remain to be investigated. Patients infected with variant B.1.1.519 showed a highly significant adjusted odds ratio (aOR) increase of 1.85 over non-B.1.1.519 patients for developing a severe/critical outcome (p = 0.000296, 1.33-2.6 95% CI) and a 2.35-fold increase for hospitalization (p = 0.005, 1.32-4.34 95% CI). The continuous monitoring of this and other variants will be required to control the ongoing pandemic as it evolves.


Asunto(s)
COVID-19/epidemiología , COVID-19/virología , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Número Básico de Reproducción/estadística & datos numéricos , Evolución Biológica , Genoma Viral , Haplotipos , Humanos , México/epidemiología , Mutación , Nasofaringe/virología , Filogenia , ARN Viral , SARS-CoV-2/clasificación
20.
Methods Mol Biol ; 2074: 181-199, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31583639

RESUMEN

Biomolecular networks such as protein-protein interaction networks provide a static picture of the interplay of genes and their products, and, consequently, they fail to capture dynamic changes taking place during the development of complex diseases. KeyPathwayMiner is a software platform designed to fill this gap by integrating previous knowledge captured in molecular interaction networks with OMICS datasets (DNA microarrays, RNA sequencing, genome-wide methylation studies, etc.) to extract connected subnetworks with a high number of deregulated genes. This protocol describes how to use KeyPathwayMiner for integrated analysis of multi-omics datasets in the network analysis tool Cytoscape and in a stand-alone web application available at https://keypathwayminer.compbio.sdu.dk .


Asunto(s)
Biología Computacional/métodos , Animales , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Mapas de Interacción de Proteínas , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA