Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(1)2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38203003

RESUMEN

Health-tracking from photoplethysmography (PPG) signals is significantly hindered by motion artifacts (MAs). Although many algorithms exist to detect MAs, the corrupted signal often remains unexploited. This work introduces a novel method able to reconstruct noisy PPGs and facilitate uninterrupted health monitoring. The algorithm starts with spectral-based MA detection, followed by signal reconstruction by using the morphological and heart-rate variability information from the clean segments adjacent to noise. The algorithm was tested on (a) 30 noisy PPGs of a maximum 20 s noise duration and (b) 28 originally clean PPGs, after noise addition (2-120 s) (1) with and (2) without cancellation of the corresponding clean segment. Sampling frequency was 250 Hz after resampling. Noise detection was evaluated by means of accuracy, sensitivity, and specificity. For the evaluation of signal reconstruction, the heart-rate (HR) was compared via Pearson correlation (PC) and absolute error (a) between ECGs and reconstructed PPGs and (b) between original and reconstructed PPGs. Bland-Altman (BA) analysis for the differences in HR estimation on original and reconstructed segments of (b) was also performed. Noise detection accuracy was 90.91% for (a) and 99.38-100% for (b). For the PPG reconstruction, HR showed 99.31% correlation in (a) and >90% for all noise lengths in (b). Mean absolute error was 1.59 bpm for (a) and 1.26-1.82 bpm for (b). BA analysis indicated that, in most cases, 90% or more of the recordings fall within the confidence interval, regardless of the noise length. Optimal performance is achieved even for signals of noise up to 2 min, allowing for the utilization and further analysis of recordings that would otherwise be discarded. Thereby, the algorithm can be implemented in monitoring devices, assisting in uninterrupted health-tracking.


Asunto(s)
Algoritmos , Fotopletismografía , Artefactos , Electrocardiografía , Frecuencia Cardíaca
2.
Entropy (Basel) ; 26(1)2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38248154

RESUMEN

Atrial fibrillation (AF) is a prevalent cardiac arrhythmia often treated concomitantly with other cardiac interventions through the Cox-Maze procedure. This highly invasive intervention is still linked to a long-term recurrence rate of approximately 35% in permanent AF patients. The aim of this study is to preoperatively predict long-term AF recurrence post-surgery through the analysis of atrial activity (AA) organization from non-invasive electrocardiographic (ECG) recordings. A dataset comprising ECGs from 53 patients with permanent AF who had undergone Cox-Maze concomitant surgery was analyzed. The AA was extracted from the lead V1 of these recordings and then characterized using novel predictors, such as the mean and standard deviation of the relative wavelet energy (RWEm and RWEs) across different scales, and an entropy-based metric that computes the stationary wavelet entropy variability (SWEnV). The individual predictors exhibited limited predictive capabilities to anticipate the outcome of the procedure, with the SWEnV yielding a classification accuracy (Acc) of 68.07%. However, the assessment of the RWEs for the seventh scale (RWEs7), which encompassed frequencies associated with the AA, stood out as the most promising individual predictor, with sensitivity (Se) and specificity (Sp) values of 80.83% and 67.09%, respectively, and an Acc of almost 75%. Diverse multivariate decision tree-based models were constructed for prediction, giving priority to simplicity in the interpretation of the forecasting methodology. In fact, the combination of the SWEnV and RWEs7 consistently outperformed the individual predictors and excelled in predicting post-surgery outcomes one year after the Cox-Maze procedure, with Se, Sp, and Acc values of approximately 80%, thus surpassing the results of previous studies based on anatomical predictors associated with atrial function or clinical data. These findings emphasize the crucial role of preoperative patient-specific ECG signal analysis in tailoring post-surgical care, enhancing clinical decision making, and improving long-term clinical outcomes.

3.
Sensors (Basel) ; 22(14)2022 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-35891025

RESUMEN

Local activation waves (LAWs) detection in complex fractionated atrial electrograms (CFAEs) during catheter ablation (CA) of atrial fibrillation (AF), the commonest cardiac arrhythmia, is a complicated task due to their extreme variability and heterogeneity in amplitude and morphology. There are few published works on reliable LAWs detectors, which are efficient for regular or low fractionated bipolar electrograms (EGMs) but lack satisfactory results when CFAEs are analyzed. The aim of the present work is the development of a novel optimized method for LAWs detection in CFAEs in order to assist cardiac mapping and catheter ablation (CA) guidance. The database consists of 119 bipolar EGMs classified by AF types according to Wells' classification. The proposed method introduces an alternative Botteron's preprocessing technique targeting the slow and small-ampitude activations. The lower band-pass filter cut-off frequency is modified to 20 Hz, and a hyperbolic tangent function is applied over CFAEs. Detection is firstly performed through an amplitude-based threshold and an escalating cycle-length (CL) analysis. Activation time is calculated at each LAW's barycenter. Analysis is applied in five-second overlapping segments. LAWs were manually annotated by two experts and compared with algorithm-annotated LAWs. AF types I and II showed 100% accuracy and sensitivity. AF type III showed 92.77% accuracy and 95.30% sensitivity. The results of this study highlight the efficiency of the developed method in precisely detecting LAWs in CFAEs. Hence, it could be implemented on real-time mapping devices and used during CA, providing robust detection results regardless of the fractionation degree of the analyzed recordings.


Asunto(s)
Fibrilación Atrial , Ablación por Catéter , Algoritmos , Fibrilación Atrial/diagnóstico , Ablación por Catéter/métodos , Técnicas Electrofisiológicas Cardíacas , Humanos
4.
Entropy (Basel) ; 24(9)2022 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-36141147

RESUMEN

Atrial fibrillation (AF) is the most common cardiac arrhythmia, and in response to increasing clinical demand, a variety of signals and indices have been utilized for its analysis, which include complex fractionated atrial electrograms (CFAEs). New methodologies have been developed to characterize the atrial substrate, along with straightforward classification models to discriminate between paroxysmal and persistent AF (ParAF vs. PerAF). Yet, most previous works have missed the mark for the assessment of CFAE signal quality, as well as for studying their stability over time and between different recording locations. As a consequence, an atrial substrate assessment may be unreliable or inaccurate. The objectives of this work are, on the one hand, to make use of a reduced set of nonlinear indices that have been applied to CFAEs recorded from ParAF and PerAF patients to assess intra-recording and intra-patient stability and, on the other hand, to generate a simple classification model to discriminate between them. The dominant frequency (DF), AF cycle length, sample entropy (SE), and determinism (DET) of the Recurrence Quantification Analysis are the analyzed indices, along with the coefficient of variation (CV) which is utilized to indicate the corresponding alterations. The analysis of the intra-recording stability revealed that discarding noisy or artifacted CFAE segments provoked a significant variation in the CV(%) in any segment length for the DET and SE, with deeper decreases for longer segments. The intra-patient stability provided large variations in the CV(%) for the DET and even larger for the SE at any segment length. To discern ParAF versus PerAF, correlation matrix filters and Random Forests were employed, respectively, to remove redundant information and to rank the variables by relevance, while coarse tree models were built, optimally combining high-ranked indices, and tested with leave-one-out cross-validation. The best classification performance combined the SE and DF, with an accuracy (Acc) of 88.3%, to discriminate ParAF versus PerAF, while the highest single Acc was provided by the DET, reaching 82.2%. This work has demonstrated that due to the high variability of CFAEs data averaging from one recording place or among different recording places, as is traditionally made, it may lead to an unfair oversimplification of the CFAE-based atrial substrate characterization. Furthermore, a careful selection of reduced sets of features input to simple classification models is helpful to accurately discern the CFAEs of ParAF versus PerAF.

5.
Sensors (Basel) ; 21(9)2021 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-33925583

RESUMEN

In recent years, electroencephalographic (EEG) signals have been intensively used in the area of emotion recognition, partcularly in distress identification due to its negative impact on physical and mental health. Traditionally, brain activity has been studied from a frequency perspective by computing the power spectral density of the EEG recordings and extracting features from different frequency sub-bands. However, these features are often individually extracted from single EEG channels, such that each brain region is separately evaluated, even when it has been corroborated that mental processes are based on the coordination of different brain areas working simultaneously. To take advantage of the brain's behaviour as a synchronized network, in the present work, 2-D and 3-D spectral images constructed from common 32 channel EEG signals are evaluated for the first time to discern between emotional states of calm and distress using a well-known deep-learning algorithm, such as AlexNet. The obtained results revealed a significant improvement in the classification performance regarding previous works, reaching an accuracy about 84%. Moreover, no significant differences between the results provided by the diverse approaches considered to reconstruct 2-D and 3-D spectral maps from the original location of the EEG channels over the scalp were noticed, thus suggesting that these kinds of images preserve original spatial brain information.


Asunto(s)
Electroencefalografía , Redes Neurales de la Computación , Algoritmos , Encéfalo , Emociones
6.
Sensors (Basel) ; 22(1)2021 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-35009833

RESUMEN

Atrial substrate modification after pulmonary vein isolation (PVI) of paroxysmal atrial fibrillation (pAF) can be assessed non-invasively by analyzing P-wave duration in the electrocardiogram (ECG). However, whether right (RA) and left atrium (LA) contribute equally to this phenomenon remains unknown. The present study splits fundamental P-wave features to investigate the different RA and LA contributions to P-wave duration. Recordings of 29 pAF patients undergoing first-ever PVI were acquired before and after PVI. P-wave features were calculated: P-wave duration (PWD), duration of the first (PWDon-peak) and second (PWDpeak-off) P-wave halves, estimating RA and LA conduction, respectively. P-wave onset (PWon-R) or offset (PWoff-R) to R-peak interval, measuring combined atrial/atrioventricular and single atrioventricular conduction, respectively. Heart-rate fluctuation was corrected by scaling. Pre- and post-PVI results were compared with Mann-Whitney U-test. PWD was correlated with the remaining features. Only PWD (non-scaling: Δ=-9.84%, p=0.0085, scaling: Δ=-17.96%, p=0.0442) and PWDpeak-off (non-scaling: Δ=-22.03%, p=0.0250, scaling: Δ=-27.77%, p=0.0268) were decreased. Correlation of all features with PWD was significant before/after PVI (p<0.0001), showing the highest value between PWD and PWon-R (ρmax=0.855). PWD correlated more with PWDon-peak (ρ= 0.540-0.805) than PWDpeak-off (ρ= 0.419-0.710). PWD shortening after PVI of pAF stems mainly from the second half of the P-wave. Therefore, noninvasive estimation of LA conduction time is critical for the study of atrial substrate modification after PVI and should be addressed by splitting the P-wave in order to achieve improved estimations.


Asunto(s)
Fibrilación Atrial , Ablación por Catéter , Venas Pulmonares , Atrios Cardíacos , Humanos , Venas Pulmonares/cirugía , Recurrencia , Resultado del Tratamiento
7.
Entropy (Basel) ; 22(2)2020 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-33286006

RESUMEN

Atrial fibrillation (AF) is currently the most common cardiac arrhythmia, with catheter ablation (CA) of the pulmonary veins (PV) being its first line therapy. Ablation of complex fractionated atrial electrograms (CFAEs) outside the PVs has demonstrated improved long-term results, but their identification requires a reliable electrogram (EGM) fractionation estimator. This study proposes a technique aimed to assist CA procedures under real-time settings. The method has been tested on three groups of recordings: Group 1 consisted of 24 highly representative EGMs, eight of each belonging to a different AF Type. Group 2 contained the entire dataset of 119 EGMs, whereas Group 3 contained 20 pseudo-real EGMs of the special Type IV AF. Coarse-grained correlation dimension (CGCD) was computed at epochs of 1 s duration, obtaining a classification accuracy of 100% in Group 1 and 84.0-85.7% in Group 2, using 10-fold cross-validation. The receiver operating characteristics (ROC) analysis for highly fractionated EGMs, showed 100% specificity and sensitivity in Group 1 and 87.5% specificity and 93.6% sensitivity in Group 2. In addition, 100% of the pseudo-real EGMs were correctly identified as Type IV AF. This method can consistently express the fractionation level of AF EGMs and provides better performance than previous works. Its ability to compute fractionation in short-time can agilely detect sudden changes of AF Types and could be used for mapping the atrial substrate, thus assisting CA procedures under real-time settings for atrial substrate modification.

8.
Entropy (Basel) ; 22(3)2020 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-33286045

RESUMEN

In this paper, dynamical behavior and synchronization of a non-equilibrium four-dimensional chaotic system are studied. The system only includes one constant term and has hidden attractors. Some dynamical features of the governing system, such as invariance and symmetry, the existence of attractors and dissipativity, chaotic flow with a plane of equilibria, and offset boosting of the chaotic attractor, are stated and discussed and a new disturbance-observer-based adaptive terminal sliding mode control (ATSMC) method with input saturation is proposed for the control and synchronization of the chaotic system. To deal with unexpected noises, an extended Kalman filter (EKF) is implemented along with the designed controller. Through the concept of Lyapunov stability, the proposed control technique guarantees the finite time convergence of the uncertain system in the presence of disturbances and control input limits. Furthermore, to decrease the chattering phenomena, a genetic algorithm is used to optimize the controller parameters. Finally, numerical simulations are presented to demonstrate the performance of the designed control scheme in the presence of noise, disturbances, and control input saturation.

9.
Entropy (Basel) ; 22(7)2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-33286505

RESUMEN

Atrial fibrillation (AF) is the most common heart rhythm disturbance in clinical practice. It often starts with asymptomatic and very short episodes, which are extremely difficult to detect without long-term monitoring of the patient's electrocardiogram (ECG). Although recent portable and wearable devices may become very useful in this context, they often record ECG signals strongly corrupted with noise and artifacts. This impairs automatized ulterior analyses that could only be conducted reliably through a previous stage of automatic identification of high-quality ECG intervals. So far, a variety of techniques for ECG quality assessment have been proposed, but poor performances have been reported on recordings from patients with AF. This work introduces a novel deep learning-based algorithm to robustly identify high-quality ECG segments within the challenging environment of single-lead recordings alternating sinus rhythm, AF episodes and other rhythms. The method is based on the high learning capability of a convolutional neural network, which has been trained with 2-D images obtained when turning ECG signals into wavelet scalograms. For its validation, almost 100,000 ECG segments from three different databases have been analyzed during 500 learning-testing iterations, thus involving more than 320,000 ECGs analyzed in total. The obtained results have revealed a discriminant ability to detect high-quality and discard low-quality ECG excerpts of about 93%, only misclassifying around 5% of clean AF segments as noisy ones. In addition, the method has also been able to deal with raw ECG recordings, without requiring signal preprocessing or feature extraction as previous stages. Consequently, it is particularly suitable for portable and wearable devices embedding, facilitating early detection of AF as well as other automatized diagnostic facilities by reliably providing high-quality ECG excerpts to further processing stages.

10.
Entropy (Basel) ; 22(7)2020 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-33286519

RESUMEN

Atrial fibrillation (AF) is nowadays the most common cardiac arrhythmia, being associated with an increase in cardiovascular mortality and morbidity. When AF lasts for more than seven days, it is classified as persistent AF and external interventions are required for its termination. A well-established alternative for that purpose is electrical cardioversion (ECV). While ECV is able to initially restore sinus rhythm (SR) in more than 90% of patients, rates of AF recurrence as high as 20-30% have been found after only a few weeks of follow-up. Hence, new methods for evaluating the proarrhythmic condition of a patient before the intervention can serve as efficient predictors about the high risk of early failure of ECV, thus facilitating optimal management of AF patients. Among the wide variety of predictors that have been proposed to date, those based on estimating organization of the fibrillatory (f-) waves from the surface electrocardiogram (ECG) have reported very promising results. However, the existing methods are based on traditional entropy measures, which only assess a single time scale and often are unable to fully characterize the dynamics generated by highly complex systems, such as the heart during AF. The present work then explores whether a multi-scale entropy (MSE) analysis of the f-waves may provide early prediction of AF recurrence after ECV. In addition to the common MSE, two improved versions have also been analyzed, composite MSE (CMSE) and refined MSE (RMSE). When analyzing 70 patients under ECV, of which 31 maintained SR and 39 relapsed to AF after a four week follow-up, the three methods provided similar performance. However, RMSE reported a slightly better discriminant ability of 86%, thus improving the other multi-scale-based outcomes by 3-9% and other previously proposed predictors of ECV by 15-30%. This outcome suggests that investigation of dynamics at large time scales yields novel insights about the underlying complex processes generating f-waves, which could provide individual proarrhythmic condition estimation, thus improving preoperative predictions of ECV early failure.

11.
Entropy (Basel) ; 22(11)2020 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-33286981

RESUMEN

A novel approach to solve optimal control problems dealing simultaneously with fractional differential equations and time delay is proposed in this work. More precisely, a set of global radial basis functions are firstly used to approximate the states and control variables in the problem. Then, a collocation method is applied to convert the time-delay fractional optimal control problem to a nonlinear programming one. By solving the resulting challenge, the unknown coefficients of the original one will be finally obtained. In this way, the proposed strategy introduces a very tunable framework for direct trajectory optimization, according to the discretization procedure and the range of arbitrary nodes. The algorithm's performance has been analyzed for several non-trivial examples, and the obtained results have shown that this scheme is more accurate, robust, and efficient than most previous methods.

12.
Entropy (Basel) ; 21(2)2019 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-33266872

RESUMEN

Today, four-dimensional chaotic systems are attracting considerable attention because of their special characteristics. This paper presents a non-equilibrium four-dimensional chaotic system with hidden attractors and investigates its dynamical behavior using a bifurcation diagram, as well as three well-known entropy measures, such as approximate entropy, sample entropy, and Fuzzy entropy. In order to stabilize the proposed chaotic system, an adaptive radial-basis function neural network (RBF-NN)-based control method is proposed to represent the model of the uncertain nonlinear dynamics of the system. The Lyapunov direct method-based stability analysis of the proposed approach guarantees that all of the closed-loop signals are semi-globally uniformly ultimately bounded. Also, adaptive learning laws are proposed to tune the weight coefficients of the RBF-NN. The proposed adaptive control approach requires neither the prior information about the uncertain dynamics nor the parameters value of the considered system. Results of simulation validate the performance of the proposed control method.

13.
Entropy (Basel) ; 20(8)2018 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-33265656

RESUMEN

This editorial explains the scope of the special issue and provides a thematic introduction to the contributed papers.

14.
Entropy (Basel) ; 20(8)2018 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-33265680

RESUMEN

Optimal defibrillation timing guided by ventricular fibrillation (VF) waveform analysis would contribute to improved survival of out-of-hospital cardiac arrest (OHCA) patients by minimizing myocardial damage caused by futile defibrillation shocks and minimizing interruptions to cardiopulmonary resuscitation. Recently, fuzzy entropy (FuzzyEn) tailored to jointly measure VF amplitude and regularity has been shown to be an efficient defibrillation success predictor. In this study, 734 shocks from 296 OHCA patients (50 survivors) were analyzed, and the embedding dimension (m) and matching tolerance (r) for FuzzyEn and sample entropy (SampEn) were adjusted to predict defibrillation success and patient survival. Entropies were significantly larger in successful shocks and in survivors, and when compared to the available methods, FuzzyEn presented the best prediction results, marginally outperforming SampEn. The sensitivity and specificity of FuzzyEn were 83.3% and 76.7% when predicting defibrillation success, and 83.7% and 73.5% for patient survival. Sensitivities and specificities were two points above those of the best available methods, and the prediction accuracy was kept even for VF intervals as short as 2s. These results suggest that FuzzyEn and SampEn may be promising tools for optimizing the defibrillation time and predicting patient survival in OHCA patients presenting VF.

15.
Ann Noninvasive Electrocardiol ; 20(5): 433-45, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25418673

RESUMEN

BACKGROUND: The study of atrial conduction defects associated with the onset of paroxysmal atrial fibrillation (PAF) can be addressed by analyzing the P wave from the surface electrocardiogram (ECG). Traditionally, signal-averaged ECGs have been mostly used for this purpose. However, this alternative hinders the possibility to quantify every single P wave, its variability over time, as well as to obtain complimentary and evolving information about the arrhythmia. This work analyzes the time progression of several time and frequency P wave features as potential indicators of atrial conduction variability several hours preceding the onset of PAF. METHODS: The longest sinus rhythm interval from 24-hour Holter recordings of 46 PAF patients was selected. Next, the 2 hours before the onset of PAF were extracted and divided into two 1-hour periods. Every single P wave was automatically delineated and characterized by 16 time and frequency metrics, such as its duration, absolute energy in several frequency bands and high-to-low-frequency energy ratios. Finally, the P wave variability over each 1-hour period was estimated from the 16 features making use of a least-squares linear fitting. As a reference, the same parameters were also estimated from a set of 1-hour ECG segments randomly chosen from a control group of 53 healthy subjects age-, gender-, and heart rate-matched. RESULTS: All the analyzed metrics provided an increasing P wave variability trend as the onset of PAF approximated, being P wave duration and P wave high-frequency energy the most significant individual metrics. The linear fitting slope α associated with P wave duration was (2.48 ± 1.98)×10(-2) for healthy subjects, (23.8 ± 14.1)×10(-2) for ECG segments far from PAF and for (81.8 ± 48.7)×10(-2) ECG segments close to PAF p = 6.96×10(-22) . Similarly, the P wave high-frequency energy linear fitting slope was (2.42 ± 4.97)×10(-9) , (54.2 ± 107.1)×10(-9) and (274.2 ± 566.1)×10(-9) , respectively (p = 2.85×10(-20) ). A univariate discriminant analysis provided that both P wave duration and P wave high-frequency energy could discern among the three ECG sets with diagnostic ability around 80%, which was improved up to 88% by combining these metrics in a multivariate discriminant analysis. CONCLUSION: Alterations in atrial conduction can be successfully quantified several hours before the onset of PAF by estimating variability over time of several time and frequency P wave features.


Asunto(s)
Arritmias Cardíacas/diagnóstico , Fibrilación Atrial/diagnóstico , Electrocardiografía Ambulatoria , Sistema de Conducción Cardíaco/anomalías , Anciano , Arritmias Cardíacas/complicaciones , Fibrilación Atrial/etiología , Complejos Atriales Prematuros/complicaciones , Complejos Atriales Prematuros/diagnóstico , Síndrome de Brugada , Trastorno del Sistema de Conducción Cardíaco , Femenino , Frecuencia Cardíaca , Humanos , Masculino , Persona de Mediana Edad
16.
Heliyon ; 10(3): e25295, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38327415

RESUMEN

Catheter ablation (CA) remains the cornerstone alternative to cardioversion for sinus rhythm (SR) restoration in patients with atrial fibrillation (AF). Unfortunately, despite the last methodological and technological advances, this procedure is not consistently effective in treating persistent AF. Beyond introducing new indices to characterize the fibrillatory waves (f-waves) recorded through the preoperative electrocardiogram (ECG), the aim of this study is to combine frequency- and time-domain features to improve CA outcome prediction and optimize patient selection for the procedure, given the absence of any study that jointly analyzes information from both domains. Precisely, the f-waves of 151 persistent AF patients undergoing their first CA procedure were extracted from standard V1 lead. Novel spectral and amplitude features were derived from these waves and combined through a machine learning algorithm to anticipate the intervention mid-term outcome. The power rate index (φ), which estimates the power of the harmonic content regarding the dominant frequency (DF), yielded the maximum individual discriminant ability of 64% to discern between individuals who experienced a recurrence of AF and those who sustained SR after a 9-month follow-up period. The predictive accuracy was improved up to 78.5% when this parameter φ was merged with the amplitude spectrum area in the DF bandwidth (AMSALF) and the normalized amplitude of the f-waves into a prediction model based on an ensemble classifier, built by random undersampling boosting of decision trees. This outcome suggests that the synthesis of both spectral and temporal features of the f-waves before CA might enrich the prognostic knowledge of this therapy for persistent AF patients.

17.
Bioengineering (Basel) ; 10(12)2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38136030

RESUMEN

Hypertension, a primary risk factor for various cardiovascular diseases, is a global health concern. Early identification and effective management of hypertensive individuals are vital for reducing associated health risks. This study explores the potential of deep learning (DL) techniques, specifically GoogLeNet, ResNet-18, and ResNet-50, for discriminating between normotensive (NTS) and hypertensive (HTS) individuals using photoplethysmographic (PPG) recordings. The research assesses the impact of calibration at different time intervals between measurements, considering intervals less than 1 h, 1-6 h, 6-24 h, and over 24 h. Results indicate that calibration is most effective when measurements are closely spaced, with an accuracy exceeding 90% in all the DL strategies tested. For calibration intervals below 1 h, ResNet-18 achieved the highest accuracy (93.32%), sensitivity (84.09%), specificity (97.30%), and F1-score (88.36%). As the time interval between calibration and test measurements increased, classification performance gradually declined. For intervals exceeding 6 h, accuracy dropped below 81% but with all models maintaining accuracy above 71% even for intervals above 24 h. This study provides valuable insights into the feasibility of using DL for hypertension risk assessment, particularly through PPG recordings. It demonstrates that closely spaced calibration measurements can lead to highly accurate classification, emphasizing the potential for real-time applications. These findings may pave the way for advanced, non-invasive, and continuous blood pressure monitoring methods that are both efficient and reliable.

18.
Biomed Eng Online ; 11: 46, 2012 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-22877316

RESUMEN

BACKGROUND: Atrial fibrillation (AF) is the most common supraventricular arrhythmia in the clinical practice, being the subject of intensive research. METHODS: The present work introduces two different Wavelet Transform (WT) applications to electrocardiogram (ECG) recordings of patients in AF. The first one predicts spontaneous termination of paroxysmal AF (PAF), whereas the second one deals with the prediction of electrical cardioversion (ECV) outcome in persistent AF patients. In both cases, the central tendency measure (CTM) from the first differences scatter plot was applied to the AF wavelet decomposition. In this way, the wavelet coefficients vector CTM associated to the AF frequency scale was used to assess how atrial fibrillatory (f) waves variability can be related to AF events. RESULTS: Structural changes into the f waves can be assessed by combining WT and CTM to reflect atrial activity organization variation. This fact can be used to predict organization-related events in AF. To this respect, results in the prediction of PAF termination regarding sensitivity, specificity and accuracy were 100%, 91.67% and 96%, respectively. On the other hand, for ECV outcome prediction, 82.93% sensitivity, 90.91% specificity and 85.71% accuracy were obtained. Hence, CTM has reached the highest diagnostic ability as a single predictor published to date. CONCLUSIONS: Results suggest that CTM can be considered as a promising tool to characterize non-invasive AF signals. In this sense, therapeutic interventions for the treatment of paroxysmal and persistent AF patients could be improved, thus, avoiding useless procedures and minimizing risks.


Asunto(s)
Fibrilación Atrial/diagnóstico , Electrocardiografía/métodos , Análisis de Ondículas , Anciano , Fibrilación Atrial/terapia , Cardioversión Eléctrica , Femenino , Humanos , Masculino , Resultado del Tratamiento
19.
Biosensors (Basel) ; 12(5)2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35624590

RESUMEN

The detection of hypertension (HT) is of great importance for the early diagnosis of cardiovascular diseases (CVDs), as subjects with high blood pressure (BP) are asymptomatic until advanced stages of the disease. The present study proposes a classification model to discriminate between normotensive (NTS) and hypertensive (HTS) subjects employing electrocardiographic (ECG) and photoplethysmographic (PPG) recordings as an alternative to traditional cuff-based methods. A total of 913 ECG, PPG and BP recordings from 69 subjects were analyzed. Then, signal preprocessing, fiducial points extraction and feature selection were performed, providing 17 discriminatory features, such as pulse arrival and transit times, that fed machine-learning-based classifiers. The main innovation proposed in this research uncovers the relevance of previous calibration to obtain accurate HT risk assessment. This aspect has been assessed using both close and distant time test measurements with respect to calibration. The k-nearest neighbors-classifier provided the best outcomes with an accuracy for new subjects before calibration of 51.48%. The inclusion of just one calibration measurement into the model improved classification accuracy by 30%, reaching gradually more than 96% with more than six calibration measurements. Accuracy decreased with distance to calibration, but remained outstanding even days after calibration. Thus, the use of PPG and ECG recordings combined with previous subject calibration can significantly improve discrimination between NTS and HTS individuals. This strategy could be implemented in wearable devices for HT risk assessment as well as to prevent CVDs.


Asunto(s)
Enfermedades Cardiovasculares , Hipertensión , Calibración , Electrocardiografía , Humanos , Hipertensión/diagnóstico , Aprendizaje Automático , Fotopletismografía/métodos , Medición de Riesgo
20.
Int J Neural Syst ; 32(10): 2250026, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35469551

RESUMEN

The identification of the emotional states corresponding to the four quadrants of the valence/arousal space has been widely analyzed in the scientific literature by means of multiple techniques. Nevertheless, most of these methods were based on the assessment of each brain region separately, without considering the possible interactions among different areas. In order to study these interconnections, this study computes for the first time the functional connectivity metric called cross-sample entropy for the analysis of the brain synchronization in four groups of emotions from electroencephalographic signals. Outcomes reported a strong synchronization in the interconnections among central, parietal and occipital areas, while the interactions between left frontal and temporal structures with the rest of brain regions presented the lowest coordination. These differences were statistically significant for the four groups of emotions. All emotions were simultaneously classified with a 95.43% of accuracy, overcoming the results reported in previous studies. Moreover, the differences between high and low levels of valence and arousal, taking into account the state of the counterpart dimension, also provided notable findings about the degree of synchronization in the brain within different emotional conditions and the possible implications of these outcomes from a psychophysiological point of view.


Asunto(s)
Electroencefalografía , Emociones , Nivel de Alerta/fisiología , Encéfalo/fisiología , Emociones/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA