RESUMEN
Jet quenching is the process of color-charged partons losing energy via interactions with quark-gluon plasma droplets created in heavy-ion collisions. The collective expansion of such droplets is well described by viscous hydrodynamics. Similar evidence of collectivity is consistently observed in smaller collision systems, including pp and p+Pb collisions. In contrast, while jet quenching is observed in Pb+Pb collisions, no evidence has been found in these small systems to date, raising fundamental questions about the nature of the system created in these collisions. The ATLAS experiment at the Large Hadron Collider has measured the yield of charged hadrons correlated with reconstructed jets in 0.36 nb^{-1} of p+Pb and 3.6 pb^{-1} of pp collisions at 5.02 TeV. The yields of charged hadrons with p_{T}^{ch}>0.5 GeV near and opposite in azimuth to jets with p_{T}^{jet}>30 or 60 GeV, and the ratios of these yields between p+Pb and pp collisions, I_{pPb}, are reported. The collision centrality of p+Pb events is categorized by the energy deposited by forward neutrons from the struck nucleus. The I_{pPb} values are consistent with unity within a few percent for hadrons with p_{T}^{ch}>4 GeV at all centralities. These data provide new, strong constraints that preclude almost any parton energy loss in central p+Pb collisions.
RESUMEN
A search for a long-lived, heavy neutral lepton (N) in 139 fb^{-1} of sqrt[s]=13 TeV pp collision data collected by the ATLAS detector at the Large Hadron Collider is reported. The N is produced via WâNµ or WâNe and decays into two charged leptons and a neutrino, forming a displaced vertex. The N mass is used to discriminate between signal and background. No signal is observed, and limits are set on the squared mixing parameters of the N with the left-handed neutrino states for the N mass range 3 GeV
RESUMEN
This Letter reports the observation of τ-lepton-pair production in ultraperipheral lead-lead collisions Pb+PbâPb(γγâττ)Pb and constraints on the τ-lepton anomalous magnetic moment a_{τ}. The dataset corresponds to an integrated luminosity of 1.44 nb^{-1} of LHC Pb+Pb collisions at sqrt[s_{NN}]=5.02 TeV recorded by the ATLAS experiment in 2018. Selected events contain one muon from a τ-lepton decay, an electron or charged-particle track(s) from the other τ-lepton decay, little additional central-detector activity, and no forward neutrons. The γγâττ process is observed in Pb+Pb collisions with a significance exceeding 5 standard deviations and a signal strength of µ_{ττ}=1.03_{-0.05}^{+0.06} assuming the standard model value for a_{τ}. To measure a_{τ}, a template fit to the muon transverse-momentum distribution from τ-lepton candidates is performed, using a dimuon (γγ⵵) control sample to constrain systematic uncertainties. The observed 95% confidence-level interval for a_{τ} is -0.057
RESUMEN
This Letter reports the observation of single top quarks produced together with a photon, which directly probes the electroweak coupling of the top quark. The analysis uses 139 fb^{-1} of 13 TeV proton-proton collision data collected with the ATLAS detector at the Large Hadron Collider. Requiring a photon with transverse momentum larger than 20 GeV and within the detector acceptance, the fiducial cross section is measured to be 688±23(stat) _{-71}^{+75}(syst) fb, to be compared with the standard model prediction of 515_{-42}^{+36} fb at next-to-leading order in QCD.
RESUMEN
This Letter reports the observation of WWW production and a measurement of its cross section using 139 fb^{-1} of proton-proton collision data recorded at a center-of-mass energy of 13 TeV by the ATLAS detector at the Large Hadron Collider. Events with two same-sign leptons (electrons or muons) and at least two jets, as well as events with three charged leptons, are selected. A multivariate technique is then used to discriminate between signal and background events. Events from WWW production are observed with a significance of 8.0 standard deviations, where the expectation is 5.4 standard deviations. The inclusive WWW production cross section is measured to be 820±100 (stat)±80 (syst) fb, approximately 2.6 standard deviations from the predicted cross section of 511±18 fb calculated at next-to-leading-order QCD and leading-order electroweak accuracy.
RESUMEN
The yield of charged particles opposite to a Z boson with large transverse momentum (p_{T}) is measured in 260 pb^{-1} of pp and 1.7 nb^{-1} of Pb+Pb collision data at 5.02 TeV per nucleon pair recorded with the ATLAS detector at the Large Hadron Collider. The Z boson tag is used to select hard-scattered partons with specific kinematics, and to observe how their showers are modified as they propagate through the quark-gluon plasma created in Pb+Pb collisions. Compared with pp collisions, charged-particle yields in Pb+Pb collisions show significant modifications as a function of charged-particle p_{T} in a way that depends on event centrality and Z boson p_{T}. The data are compared with a variety of theoretical calculations and provide new information about the medium-induced energy loss of partons in a p_{T} regime difficult to measure through other channels.
RESUMEN
The first measurement of longitudinal decorrelations of harmonic flow amplitudes v_{n} for n=2-4 in Xe+Xe collisions at sqrt[s_{NN}]=5.44 TeV is obtained using 3 µb^{-1} of data with the ATLAS detector at the LHC. The decorrelation signal for v_{3} and v_{4} is found to be nearly independent of collision centrality and transverse momentum (p_{T}) requirements on final-state particles, but for v_{2} a strong centrality and p_{T} dependence is seen. When compared with the results from Pb+Pb collisions at sqrt[s_{NN}]=5.02 TeV, the longitudinal decorrelation signal in midcentral Xe+Xe collisions is found to be larger for v_{2}, but smaller for v_{3}. Current hydrodynamic models reproduce the ratios of the v_{n} measured in Xe+Xe collisions to those in Pb+Pb collisions but fail to describe the magnitudes and trends of the ratios of longitudinal flow decorrelations between Xe+Xe and Pb+Pb. The results on the system-size dependence provide new insights and an important lever arm to separate effects of the longitudinal structure of the initial state from other early and late time effects in heavy-ion collisions.
RESUMEN
Several extensions of the Standard Model predict the production of dark matter particles at the LHC. An uncharted signature of dark matter particles produced in association with VV=W^{±}W^{∓} or ZZ pairs from a decay of a dark Higgs boson s is searched for using 139 fb^{-1} of pp collisions recorded by the ATLAS detector at a center-of-mass energy of 13 TeV. The sâV(qq[over ¯])V(qq[over ¯]) decays are reconstructed with a novel technique aimed at resolving the dense topology from boosted VV pairs using jets in the calorimeter and tracking information. Dark Higgs scenarios with m_{s}>160 GeV are excluded.
RESUMEN
A search for charged leptons with large impact parameters using 139 fb^{-1} of sqrt[s]=13 TeV pp collision data from the ATLAS detector at the LHC is presented, addressing a long-standing gap in coverage of possible new physics signatures. Results are consistent with the background prediction. This search provides unique sensitivity to long-lived scalar supersymmetric lepton partners (sleptons). For lifetimes of 0.1 ns, selectron, smuon, and stau masses up to 720, 680, and 340 GeV, respectively, are excluded at 95% confidence level, drastically improving on the previous best limits from LEP.
RESUMEN
A search for lepton-flavor-violating Zâeτ and Zâµτ decays with pp collision data recorded by the ATLAS detector at the LHC is presented. This analysis uses 139 fb^{-1} of Run 2 pp collisions at sqrt[s]=13 TeV and is combined with the results of a similar ATLAS search in the final state in which the τ lepton decays hadronically, using the same data set as well as Run 1 data. The addition of leptonically decaying τ leptons significantly improves the sensitivity reach for Zââτ decays. The Zââτ branching fractions are constrained in this analysis to B(Zâeτ)<7.0×10^{-6} and B(Zâµτ)<7.2×10^{-6} at 95% confidence level. The combination with the previously published analyses sets the strongest constraints to date: B(Zâeτ)<5.0×10^{-6} and B(Zâµτ)<6.5×10^{-6} at 95% confidence level.
RESUMEN
A search for new phenomena is presented in final states with two leptons and one or no b-tagged jets. The event selection requires the two leptons to have opposite charge, the same flavor (electrons or muons), and a large invariant mass. The analysis is based on the full run-2 proton-proton collision dataset recorded at a center-of-mass energy of sqrt[s]=13 TeV by the ATLAS experiment at the LHC, corresponding to an integrated luminosity of 139 fb^{-1}. No significant deviation from the expected background is observed in the data. Inspired by the B-meson decay anomalies, a four-fermion contact interaction between two quarks (b, s) and two leptons (ee or µµ) is used as a benchmark signal model, which is characterized by the energy scale and coupling, Λ and g_{*}, respectively. Contact interactions with Λ/g_{*} lower than 2.0 (2.4) TeV are excluded for electrons (muons) at the 95% confidence level, still far below the value that is favored by the B-meson decay anomalies. Model-independent limits are set as a function of the minimum dilepton invariant mass, which allow the results to be reinterpreted in various signal scenarios.
RESUMEN
A study of the charge conjugation and parity (CP) properties of the interaction between the Higgs boson and top quarks is presented. Higgs bosons are identified via the diphoton decay channel (Hâγγ), and their production in association with a top quark pair (tt[over ¯]H) or single top quark (tH) is studied. The analysis uses 139 fb^{-1} of proton-proton collision data recorded at a center-of-mass energy of sqrt[s]=13 TeV with the ATLAS detector at the Large Hadron Collider. Assuming a CP-even coupling, the tt[over ¯]H process is observed with a significance of 5.2 standard deviations. The measured cross section times Hâγγ branching ratio is 1.64_{-0.36}^{+0.38}(stat)_{-0.14}^{+0.17}(sys) fb, and the measured rate for tt[over ¯]H is 1.43_{-0.31}^{+0.33}(stat)_{-0.15}^{+0.21}(sys) times the Standard Model expectation. The tH production process is not observed and an upper limit on its rate of 12 times the Standard Model expectation is set. A CP-mixing angle greater (less) than 43 (-43)° is excluded at 95% confidence level.
RESUMEN
The observation of forward proton scattering in association with lepton pairs (e^{+}e^{-}+p or µ^{+}µ^{-}+p) produced via photon fusion is presented. The scattered proton is detected by the ATLAS Forward Proton spectrometer, while the leptons are reconstructed by the central ATLAS detector. Proton-proton collision data recorded in 2017 at a center-of-mass energy of sqrt[s]=13 TeV are analyzed, corresponding to an integrated luminosity of 14.6 fb^{-1}. A total of 57 (123) candidates in the ee+p (µµ+p) final state are selected, allowing the background-only hypothesis to be rejected with a significance exceeding 5 standard deviations in each channel. Proton-tagging techniques are introduced for cross-section measurements in the fiducial detector acceptance, corresponding to σ_{ee+p}=11.0±2.6(stat)±1.2(syst)±0.3(lumi) and σ_{µµ+p}=7.2±1.6(stat)±0.9(syst)±0.2(lumi) fb in the dielectron and dimuon channel, respectively.
RESUMEN
This Letter presents a search for the production of new heavy resonances decaying into a Higgs boson and a photon using proton-proton collision data at sqrt[s]=13 TeV collected by the ATLAS detector at the LHC. The data correspond to an integrated luminosity of 139 fb^{-1}. The analysis is performed by reconstructing hadronically decaying Higgs boson (Hâbb[over ¯]) candidates as single large-radius jets. A novel algorithm using information about the jet constituents in the center-of-mass frame of the jet is implemented to identify the two b quarks in the single jet. No significant excess of events is observed above the expected background. Upper limits are set on the production cross-section times branching fraction for narrow spin-1 resonances decaying into a Higgs boson and a photon in the resonance mass range from 0.7 to 4 TeV, cross-section times branching fractions are excluded between 11.6 fb and 0.11 fb at a 95% confidence level.
RESUMEN
A search for Higgs boson decays into a Z boson and a light resonance in two-lepton plus jet events is performed, using a pp collision dataset with an integrated luminosity of 139 fb^{-1} collected at sqrt[s]=13 TeV by the ATLAS experiment at the CERN LHC. The resonance considered is a light boson with a mass below 4 GeV from a possible extended scalar sector or a charmonium state. Multivariate discriminants are used for the event selection and for evaluating the mass of the light resonance. No excess of events above the expected background is found. Observed (expected) 95% confidence-level upper limits are set on the Higgs boson production cross section times branching fraction to a Z boson and the signal resonance, with values in the range 17-340 pb (16_{-5}^{+6}-320_{-90}^{+130} pb) for the different light spin-0 boson mass and branching fraction hypotheses, and with values of 110 and 100 pb (100_{-30}^{+40} and 100_{-30}^{+40} pb) for the η_{c} and J/ψ hypotheses, respectively.
RESUMEN
This Letter describes a search for narrowly resonant new physics using a machine-learning anomaly detection procedure that does not rely on signal simulations for developing the analysis selection. Weakly supervised learning is used to train classifiers directly on data to enhance potential signals. The targeted topology is dijet events and the features used for machine learning are the masses of the two jets. The resulting analysis is essentially a three-dimensional search AâBC, for m_{A}â¼O(TeV), m_{B},m_{C}â¼O(100 GeV) and B, C are reconstructed as large-radius jets, without paying a penalty associated with a large trials factor in the scan of the masses of the two jets. The full run 2 sqrt[s]=13 TeV pp collision dataset of 139 fb^{-1} recorded by the ATLAS detector at the Large Hadron Collider is used for the search. There is no significant evidence of a localized excess in the dijet invariant mass spectrum between 1.8 and 8.2 TeV. Cross-section limits for narrow-width A, B, and C particles vary with m_{A}, m_{B}, and m_{C}. For example, when m_{A}=3 TeV and m_{B}â³200 GeV, a production cross section between 1 and 5 fb is excluded at 95% confidence level, depending on m_{C}. For certain masses, these limits are up to 10 times more sensitive than those obtained by the inclusive dijet search. These results are complementary to the dedicated searches for the case that B and C are standard model bosons.
RESUMEN
A search for heavy neutral Higgs bosons is performed using the LHC Run 2 data, corresponding to an integrated luminosity of 139 fb^{-1} of proton-proton collisions at sqrt[s]=13 TeV recorded with the ATLAS detector. The search for heavy resonances is performed over the mass range 0.2-2.5 TeV for the τ^{+}τ^{-} decay with at least one τ-lepton decaying into final states with hadrons. The data are in good agreement with the background prediction of the standard model. In the M_{h}^{125} scenario of the minimal supersymmetric standard model, values of tanß>8 and tanß>21 are excluded at the 95% confidence level for neutral Higgs boson masses of 1.0 and 1.5 TeV, respectively, where tanß is the ratio of the vacuum expectation values of the two Higgs doublets.
RESUMEN
The elliptic flow of muons from the decay of charm and bottom hadrons is measured in pp collisions at sqrt[s]=13 TeV using a data sample with an integrated luminosity of 150 pb^{-1} recorded by the ATLAS detector at the LHC. The muons from heavy-flavor decay are separated from light-hadron decay muons using momentum imbalance between the tracking and muon spectrometers. The heavy-flavor decay muons are further separated into those from charm decay and those from bottom decay using the distance-of-closest-approach to the collision vertex. The measurement is performed for muons in the transverse momentum range 4-7 GeV and pseudorapidity range |η|<2.4. A significant nonzero elliptic anisotropy coefficient v_{2} is observed for muons from charm decays, while the v_{2} value for muons from bottom decays is consistent with zero within uncertainties.
RESUMEN
The prevalence of hadronic jets at the LHC requires that a deep understanding of jet formation and structure is achieved in order to reach the highest levels of experimental and theoretical precision. There have been many measurements of jet substructure at the LHC and previous colliders, but the targeted observables mix physical effects from various origins. Based on a recent proposal to factorize physical effects, this Letter presents a double-differential cross-section measurement of the Lund jet plane using 139 fb^{-1} of sqrt[s]=13 TeV proton-proton collision data collected with the ATLAS detector using jets with transverse momentum above 675 GeV. The measurement uses charged particles to achieve a fine angular resolution and is corrected for acceptance and detector effects. Several parton shower Monte Carlo models are compared with the data. No single model is found to be in agreement with the measured data across the entire plane.
RESUMEN
A search for magnetic monopoles and high-electric-charge objects is presented using 34.4 fb^{-1} of 13 TeV pp collision data collected by the ATLAS detector at the LHC during 2015 and 2016. The considered signature is based upon high ionization in the transition radiation tracker of the inner detector associated with a pencil-shape energy deposit in the electromagnetic calorimeter. The data were collected by a dedicated trigger based on the tracker high-threshold hit capability. The results are interpreted in models of Drell-Yan pair production of stable particles with two spin hypotheses (0 and 1/2) and masses ranging from 200 to 4000 GeV. The search improves by approximately a factor of 5 the constraints on the direct production of magnetic monopoles carrying one or two Dirac magnetic charges and stable objects with electric charge in the range 20≤|z|≤60 and extends the charge range to 60<|z|≤100.