Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-37917046

RESUMEN

Toughness of epoxies is commonly improved by adding thermoplastic phases, which is achieved through dissolution and phase separation at the microscale. However, little is known about the synergistic effects of toughening phases on multiple scales. Therefore, here, we study the toughening of epoxies with layered poly(ether imide) (PEI) structures at the meso- to macroscale combined with gradient morphologies at the microscale originating from reaction-induced phase separation. Characteristic features of the gradient morphology were controlled by the curing temperature (120-200 °C), while the layered macro structure originates from facile scaffold manufacturing techniques with varying poly(ether imide) layer thicknesses (50-120 µm). The fracture toughness of the modified epoxy system is investigated as a function of varying cure temperature (120-200 °C) and PEI film thickness (50-120 µm). Interestingly, the result shows that the fracture toughness of modified epoxy was mainly controlled by the macroscopic feature, being the final PEI layer thickness, i.e., film thickness remaining after partial dissolution and curing. Remarkably, as the PEI layer thickness exceeds the plastic zone around the crack tip, around 62 µm, the fracture toughness of the dual scale morphology exceeds the property of bulk PEI in addition to a 3 times increase in the property of pure epoxy. On the other hand, when the final PEI thickness was smaller than 62 µm, the fracture toughness of the modified epoxy was lower than pure PEI but still higher than pure epoxy (1.5-2 times) and "bulk toughened" system with the same volume percentage, which indicates the governing mechanism relating to microscale interphase morphology. Interestingly, decreasing the gradient microscale interphase morphology can be used to trigger an alternative failure mode with a higher crack tortuosity. By combining facile scaffold assemblies with reaction-induced phase separation, dual-scale morphologies can be tailored over a wide range, leading to intricate control of fracture mechanisms with a hybrid material exceeding the toughness of the tougher phase.

2.
Materials (Basel) ; 16(1)2022 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-36614585

RESUMEN

Quasi-static or cyclic loading of an artificial starter crack in unidirectionally fibre-reinforced composite test coupons yields fracture mechanics data-the toughness or strain-energy release rate (labelled G)-for characterising delamination initiation and propagation. Thus far, the reproducibility of these tests is typically between 10 and 20%. However, differences in the size and possibly the shape, but also in the fibre lay-up, between test coupons and components or structures raise additional questions: Is G from a coupon test a suitable parameter for describing the behaviour of delaminations in composite structures? Can planar, two-dimensional, delamination propagation in composite plates or shells be properly predicted from essentially one-dimensional propagation in coupons? How does fibre bridging in unidirectionally reinforced test coupons relate to delamination propagation in multidirectional lay-ups of components and structures? How can multiple, localised delaminations-often created by impact in composite structures-and their interaction under service loads with constant or variable amplitudes be accounted for? Does planar delamination propagation depend on laminate thickness, thickness variation or the overall shape of the structure? How does exposure to different, variable service environments affect delamination initiation and propagation? Is the microscopic and mesoscopic morphology of FRP composite structures sufficiently understood for accurate predictive modelling and simulation of delamination behaviour? This contribution will examine selected issues and discuss the consequences for test development and analysis. The discussion indicates that current coupon testing and analysis are unlikely to provide the data for reliable long-term predictions of delamination behaviour in FRP composite structures. The attempts to make the building block design methodology for composite structures more efficient via combinations of experiments and related modelling look promising, but models require input data with low scatter and, even more importantly, insight into the physics of the microscopic damage processes yielding delamination initiation and propagation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA