Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Sci Food Agric ; 99(1): 143-151, 2019 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-29802725

RESUMEN

BACKGROUND: The functional characteristics of hydrocolloids are mainly dependent on their physicochemical properties. Thus, it is essential to characterize the new sources of hydrocolloids. RESULTS: Quince seed gum (QSG) is a high-molecular-weight polysaccharide (9.61 × 106 g mol-1 ) composed of 85.04 ± 2.87% carbohydrate (6.39% l-arabinose, 40.43% d-xylose, 5.60% d-galactose, 5.75% d-glucose and 31.11% d-mannose), 13.16 ± 1.73% uronic acid, 5.77 ± 0.83% moisture, 2.78 ± 0.21% protein, 5.64 ± 0.21% ash, and 0.75 ± 0.09% fat. Our findings indicated that this gum could be introduced as a value-added by-product in the food and pharmaceutical industries. Carbon-13 nuclear magnetic resonance and Fourier transform infrared spectroscopy suggested a highly substituted xylan structure for QSG. In the dilute regime, an increase in the ion concentration was accompanied by a decrease in intrinsic viscosity of QSG. When the salt concentration increased from 0 to 50 mmol L-1 , the consistency coefficient (as a measure of apparent viscosity) declined. On the other hand, with further increasing of salt concentration, the consistency coefficient (as a measure of apparent viscosity) values increased. Similarly, the G' and G″ values for 10 and 50 mmol L-1 calcium chloride concentrations were less than in control samples. CONCLUSION: The rheological behavior of the QSG studied in this paper can provide insight into its potential application in food and pharmaceutical industries. © 2018 Society of Chemical Industry.


Asunto(s)
Extractos Vegetales/química , Polisacáridos/química , Rosaceae/química , Semillas/química , Espectroscopía de Resonancia Magnética , Extractos Vegetales/aislamiento & purificación , Polisacáridos/aislamiento & purificación , Reología , Espectroscopía Infrarroja por Transformada de Fourier , Viscosidad
2.
AMB Express ; 7(1): 58, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28275995

RESUMEN

Classical field retting and controlled fungal retting of hemp using Phlebia radiata Cel 26 (a mutant with low cellulose degrading ability) were compared with pure pectinase treatment with regard to mechanical properties of the produced fibre/epoxy composites. For field retting a classification of the microbial evolution (by gene sequencing) and enzyme profiles were conducted. By phylogenetic frequency mapping, different types of fungi, many belonging to the Ascomycota phylum were found on the fibres during the first 2 weeks of field retting, and thereafter, different types of bacteria, notably Proteobacteria, also proliferated on the field retted fibres. Extracts from field retted fibres exhibited high glucanase activities, while extracts from P. radiata Cel 26 retted fibres showed high polygalacturonase and laccase activities. As a result, fungal retting gave a significantly higher glucan content in the fibres than field retting (77 vs. 67%) and caused a higher removal of pectin as indicated by lower galacturonan content of fibres (1.6%) after fibres were retted for 20 days with P. radiata Cel 26 compared to a galacturonan content of 3.6% for field retted fibres. Effective fibre stiffness increased slightly after retting with P. radiata Cel 26 from 65 to 67 GPa, while it decreased after field retting to 52 GPa. Effective fibre strength could not be determined similarly due to variations in fibre fracture strain and fibre-matrix adhesion. A maximum composite strength with 50 vol% fibres of 307 MPa was obtained using P. radiata Cel 26 compared to 248 MPa with field retting.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA