Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Hazard Mater ; 469: 134007, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38490150

RESUMEN

Electrogenic biofilms in bioelectrochemical systems (BES) are critical in wastewater treatment. Industrial effluents often contain cobalt (Co2+); however, its impact on biofilms is unknown. This study investigated how increasing Co2+ concentrations (0-30 mg/L) affect BES biofilm community dynamics, extracellular polymeric substances, microbial metabolism, electron transfer gene expression, and electrochemical performance. The research revealed that as Co2+ concentrations increased, power generation progressively declined, from 345.43 ± 4.07 mW/m2 at 0 mg/L to 160.51 ± 0.86 mW/m2 at 30 mg/L Co2+. However, 5 mg/L Co2+ had less effect. The Co2+ removal efficiency in the reactors fed with 5 and 10 mg/L concentrations exceeded 99% and 94%, respectively. However, at 20 and 30 mg/L, the removal efficiency decreased substantially, likely because of reduced biofilm viability. FTIR indicated the participation of biofilm functional groups in Co2+ uptake. XPS revealed Co2+ presence in biofilms as CoO and Co(OH)2, indicating precipitation also aided removal. Cyclic voltammetry and electrochemical impedance spectroscopy tests revealed that 5 mg/L Co2+ had little impact on the electrocatalytic activity, while higher concentrations impaired it. Furthermore, at a concentration of 5 mg/L Co2+, there was an increase in the proportion of the genus Anaeromusa-Anaeroarcus, while the genus Geobacter declined at all tested Co2+ concentrations. Additionally, higher concentrations of Co2+ suppressed the expression of extracellular electron transfer genes but increased the expression of Co2+-resistance genes. Overall, this study establishes how Co2+ impacts electrogenic biofilm composition, function, and treatment efficacy, laying the groundwork for the optimized application of BES in remediating Co2+-contaminated wastewater.


Asunto(s)
Ácidos Alcanesulfónicos , Fuentes de Energía Bioeléctrica , Purificación del Agua , Cobalto , Electrones , Biopelículas , Electrodos , Iones
2.
J Colloid Interface Sci ; 638: 252-262, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36738548

RESUMEN

The practical application of carbon anode in capacitive deionization (CDI) is greatly hindered by their poor adsorption capacity and co-ion effect. Herein, an N-doped graphene-like carbon (NC) decorated with Fe/Fe3C nanoparticles composite (Fe/Fe3C@NC) with large specific surface area and plentiful porosity is fabricated via a facile and scalable method, namely sol-gel method combined with Fe-catalyzed carbonization. As expected, it exhibits superior CDI performance as a Cl-storage electrode, with Cl- adsorption capacity as high as 102.3 mg g-1 at 1000 mg L-1 Cl- concentration and 1.4 V voltage, and a stable capacity of 68.5 mg g-1 for 60 cycles in 500 mg L-1 Cl- concentration and 100 mA g-1 current density. More importantly, on the basis of electrochemical tests, ex-situ X-ray diffraction, ex-situ X-ray photoelectron spectroscopy (XPS), and XPS analysis with argon ion depth etching, it is revealed that the chlorine storage mechanism of the Fe/Fe3C@NC electrode is dominated by the surface-related redox pseudocapacitance behavior of Fe2+/Fe3+ couple occurring on or near the surface, enabling fast and reversible ion storage. This work proposes an economical and environmentally friendly general method for the design and development of high-performance Cl-storage electrodes for CDI, and offers an in-depth insight into the Cl- storage mechanism of Fe decorated carbon electrodes, further promoting the development of CDI technology.


Asunto(s)
Grafito , Purificación del Agua , Carbono/química , Purificación del Agua/métodos , Cloruros , Oxidación-Reducción
3.
Water Res ; 231: 119655, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36706471

RESUMEN

Although Castellaniella species are crucial for denitrification, there is no report on their capacity to carry out denitrification and anode respiration simultaneously in a bioelectrochemical system (BES). Herein, the ability of a mixed inoculum of electricigenic Castellaniella species to perform simultaneous denitrification and anode respiration coupled with cathodic metals recovery was investigated in a BES. Results showed that 500 mg/L NO3--N significantly decreased power generation, whereas 100 and 250 mg/L NO3--N had a lesser impact. The single-chamber MFCs (SCMFCs) fed with 100 and 250 mg/L NO3--N concentrations achieved a removal efficiency higher than 90% in all cycles. In contrast, the removal efficiency in the SCMFCs declined dramatically at 500 mg/L NO3--N, which might be attributable to decreased microbial viability as revealed by SEM and CLSM. EPS protein content and enzymatic activities of the biofilms decreased significantly at this concentration. Cyclic voltammetry results revealed that the 500 mg/L NO3--N concentration decreased the redox activities of anodic biofilms, while electrochemical impedance spectroscopy showed that the internal resistance of the SCMFCs at this concentration increased significantly. In addition, BES inoculated with the Castellaniella species was able to simultaneously perform heterotrophic anodic denitrification and cathodic metals recovery from real wastewater. The BES attained Cu2+, Hg2+, Pb2+, and Zn2+ removal efficiencies of 99.86 ± 0.10%, 99.98 ± 0.014%, 99.98 ± 0.01%, and 99.17 ± 0.30%, respectively, from the real wastewater. Cu2+ was bio-electrochemically reduced to Cu0 and Cu2O, whereas Hg0 and HgO constituted the Hg species recovered via bioelectrochemical reduction and chemical deposition, respectively. Furthermore, Pb2+ and Zn2+ were bio-electrochemically reduced to Pb0 and Zn0, respectively. Over 89% of NO3--N was removed from the BES anolyte during the recovery of the metals. This research reveals promising denitrifying exoelectrogens for enhanced power generation, NO3--N removal, and heavy metals recovery in BES.


Asunto(s)
Fuentes de Energía Bioeléctrica , Mercurio , Aguas Residuales , Desnitrificación , Plomo , Electrodos , Nitrógeno
4.
Artículo en Inglés | MEDLINE | ID: mdl-36078322

RESUMEN

Capacitive deionization (CDI) is an emerging eco-friendly desalination technology with mild operation conditions. However, the energy consumption of CDI has not yet been comprehensively summarized, which is closely related to the economic cost. Hence, this study aims to review the energy consumption performances and mechanisms in the literature of CDI, and to reveal a future direction for optimizing the consumed energy. The energy consumption of CDI could be influenced by a variety of internal and external factors. Ion-exchange membrane incorporation, flow-by configuration, constant current charging mode, lower electric field intensity and flowrate, electrode material with a semi-selective surface or high wettability, and redox electrolyte are the preferred elements for low energy consumption. In addition, the consumed energy in CDI could be reduced to be even lower by energy regeneration. By combining the favorable factors, the optimization of energy consumption (down to 0.0089 Wh·gNaCl-1) could be achieved. As redox flow desalination has the benefits of a high energy efficiency and long lifespan (~20,000 cycles), together with the incorporation of energy recovery (over 80%), a robust future tendency of energy-efficient CDI desalination is expected.

5.
J Hazard Mater ; 430: 128401, 2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35149494

RESUMEN

Bauxite is a widely available Al-O-rich mineral with great potential for abating fluoride. However, low adsorption capacity, a narrow workable pH range, and a lack of clarity on the best removal mechanism hinder its application. In this work, a highly efficient bauxite nanocomposite (Bx-Ce-La@500) was synthesized via doping and pyrolysis, and its fluoride adsorption in industrial wastewater was examined. Doping Ce/La synergistically improved the fluoride adsorption affinity of the composite (from pHPZC 8.0 ~ 10.0) and enhanced the •OH. The materials were characterized by SEM-EDS, BET, XRD, and TGA while XPS, FTIR, and DFT were used to investigate the mechanism of fluoride sorption. Results show that Bx-Ce-La@ 500 has a positive zeta potential of 26.3-23.1 mV from pH 1~ 10. The Langmuir model was the best fit with a maximum adsorption capacity of 88.13 mg/g and removal efficiency up to 100% in 50 ppm F- solution. The high F- removal was attributed to the enhanced surface affinity and the formation of adequate •OH on the material. Except for carbonate and phosphate ions, other ions exhibited negligible effects and the selective removal of F- in real wastewater was high. The main mechanism of adsorption was the ligand/ion exchange and electrostatic attraction.

6.
Artículo en Inglés | MEDLINE | ID: mdl-36612838

RESUMEN

Capacitive deionization (CDI) is a newly developed desalination technology with low energy consumption and environmental friendliness. The surface area restricts the desalination capacities of traditional carbon-based CDI electrodes while battery materials emerge as CDI electrodes with high performances due to the larger electrochemical capacities, but suffer limited production of materials. LiMn2O4 is a massively-produced lithium-ion battery material with a stable spinel structure and a high theoretical specific capacity of 148 mAh·g-1, revealing a promising candidate for CDI electrode. Herein, we employed spinel LiMn2O4 as the cathode and activated carbon as the anode in the CDI cell with an anion exchange membrane to limit the movement of cations, thus, the lithium ions released from LiMn2O4 would attract the chloride ions and trigger the desalination process of the other side of the membrane. An ultrahigh deionization capacity of 159.49 mg·g-1 was obtained at 1.0 V with an initial salinity of 20 mM. The desalination capacity of the CDI cell at 1.0 V with 10 mM initial NaCl concentration was 91.04 mg·g-1, higher than that of the system with only carbon electrodes with and without the ion exchange membrane (39.88 mg·g-1 and 7.84 mg·g-1, respectively). In addition, the desalination results and mechanisms were further verified with the simulation of COMSOL Multiphysics.


Asunto(s)
Litio , Purificación del Agua , Purificación del Agua/métodos , Iones , Electrodos
7.
Environ Sci Pollut Res Int ; 28(6): 6886-6897, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33010011

RESUMEN

The MIL-53(Al)-NH2 was designed to remove fluoride with hierarchical hollow morphology. It was used as an adsorbent for fluoride removal at a wide pH range (1-12) due to the positive zeta potential of MIL-53(Al)-NH2. The pH did not significantly influence the fluoride adsorption into MIL-53(Al)-NH2. However, the adsorbent indicated good adsorption capacity with maximum adsorption of 1070.6 mg g-1. Different adsorption kinetic and thermodynamic models were investigated for MIL-53(Al)-NH2. The adsorption of fluoride into MIL-53(Al)-NH2 followed the pseudo-second-order model and a well-fitted Langmuir model indicating chemical and monolayer adsorption process. When mass transfer model was used at initial concentrations of 100 ppm and 1000 ppm, the rates of conversion were 8.4 × 10-8 and 4.7 × 10-8 m s-1. Moreover, anions such as [Formula: see text], [Formula: see text], [Formula: see text], Cl-, and Br- also had less effect on the adsorption of fluoride. Also, experimental and theoretical calculations on adsorption mechanism of MIL-53(Al)-NH2 revealed that the material had good stability and regenerative capacity using alum as regenerant. In a nutshell, the dominant crystal face (1 0 1) and adsorption sites Al, O, and N combined well with F-, HF, and HF2- through density functional theory. It opens a good way of designing hollow MOFs for adsorbing contaminants in wastewater.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Fluoruros , Concentración de Iones de Hidrógeno , Contaminantes Químicos del Agua/análisis
8.
Environ Sci Ecotechnol ; 8: 100123, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36156989

RESUMEN

In this study, metal-organic framework MIL-53(Al) was synthesized and studied to understand the different mechanisms between normal MIL-53(Al) and 2D metal-organic framework MIL-53(Al) for removing fluoride. Comparatively, the 2D MIL-53(Al) had two-dimensional linear morphology rather than block shape, indicating more expose adsorptive sites than normal MIL-53(Al). The batch adsorption experiments were applied to investigate the performance of 2D MIL-53(Al), including pH, adsorption kinetics, and thermodynamics. The 2D MIL-53(Al) (75.50 mg/g) showed better adsorption capacity than normal MIL-53(Al) (35.63 mg/g). The adsorption process of 2D MIL-53(Al) followed the pseudo-first-order model and Langmuir model. The adsorption mechanism of this material was further studied by using experimental characterization and density functional theory calculations in detail. The main adsorptive sites were Al and O in the 2D MIL-53(Al), and the relationship between fluoride binding with Al and O was HF2 - > HF > F-. The species of fluoride were HF2 -, HF, F at different pH and concentrations. Hence, this study provides a significant way on the application of two-dimensional materials for removing fluoride.

9.
Nanomaterials (Basel) ; 10(9)2020 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-32872678

RESUMEN

Water pollution has caused the ecosystem to be in a state of imbalance for a long time. It has become a major global ecological and environmental problem today. Solving the potential hidden dangers of pollutants and avoiding unauthorized access to resources has become the necessary condition and important task to ensure the sustainable development of human society. To solve such problems, this review summarizes the research progress of nanomaterials in the field of water aimed at the treatment of water pollution and the development and utilization of new energy. The paper also tries to seek scientific solutions to environmental degradation and to create better living environmental conditions from previously published cutting edge research. The main content in this review article includes four parts: advanced oxidation, catalytic adsorption, hydrogen, and oxygen production. Among a host of other things, this paper also summarizes the various ways by which composite nanomaterials have been combined for enhancing catalytic efficiency, reducing energy consumption, recycling, and ability to expand their scope of application. Hence, this paper provides a clear roadmap on the status, success, problems, and the way forward for future studies.

10.
J Colloid Interface Sci ; 565: 465-473, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-31982713

RESUMEN

Metal-organic frameworks (MOFs) based membranes with superior mechanical properties are of particular interest in purification, separation, and catalysis. Nevertheless, their fabrication still remains a grand challenge. Here, fungus hyphae (Mucor) were used as a robust scaffold to load the MOFs and induced the formation of porous and flexible membranes. ZIF-8 was used as a representative of MOFs. The ZIF-8@Mucor membrane was formed by the in-situ growth of ZIF-8 on hyphae and then a vacuum filtration of the ZIF-8/hyphae composite. ZIF-8 was effectively dispersed on the ZIF-8@Mucor membrane, and the shear modulus of ZIF-8@Mucor-3 was 864 MPa by calculation. The ZIF-8@Mucor membrane exhibited promising properties for adsorption application to remove the highly toxic Pb2+. The adsorption capacity of this membrane was as high as 1443.29 mg/g. Results from dynamic adsorption indicated that the penetration concentration of Pb2+ ions was less than 5% of the original level before 80 min whereas after 160 min, penetration concentration of Pb2+ ions was more than 90%. This study would open a new way of how to synthesize composite MOFs/bacterial membranes for energy and environment purposes.


Asunto(s)
Hifa/química , Plomo/aislamiento & purificación , Zeolitas/química , Adsorción , Iones/química , Iones/aislamiento & purificación , Plomo/química , Tamaño de la Partícula , Porosidad , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA