Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 6423, 2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37076537

RESUMEN

The primary goal of this article is to explore the radiative stagnation point flow of nanofluid with cross-diffusion and entropy generation across a permeable curved surface. Moreover, the activation energy, Joule heating, slip condition, and viscous dissipation effects have been considered in order to achieve realistic results. The governing equations associated with the modeling of this research have been transformed into ordinary differential equations by utilizing appropriate transformation variable. The resulting system of equations was solved numerically by using Bvp4c built-in package in MATLAB. The impact of involved parameters have been graphically examined for the diverse features of velocity, temperature, and concentration profiles. Throughout the analysis, the volume fraction is assumed to be less than [Formula: see text] while the Prandtl number is set to be [Formula: see text]. In addition, the entropy generation, friction drag, Nusselt, and Sherwood numbers have been plotted for describing the diverse physical aspects of the underlying phenomena. The major outcomes reveal that the curvature parameter reduces the velocity profile and skin friction coefficient whereas the magnetic parameter, temperature difference parameter, and radiation parameter intensify the entropy generation.

2.
Sci Rep ; 12(1): 16020, 2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-36163398

RESUMEN

Using a thermally stratified water-based nanofluid and a permeable stretching sheet as a simulation environment, this research examines the impact of nanoparticle aggregation on MHD mixed convective stagnation point flow. Nanoparticle aggregation is studied using two modified models: the Krieger-Dougherty and the Maxwell-Bruggeman. The present problem's governing equations were transformed into a solvable mathematical model utilizing legitimate similarity transformations, and numerical solutions were then achieved using shooting with Runge-Kutta Fehlberg (RKF) technique in Mathematica. Equilibrium point flow toward permeable stretching surface is important for the extrusion process because it produces required heat and mass transfer patterns and identifies and clarifies fragmented flow phenomena using diagrams. Nanoparticle volume fraction was shown to have an impact on the solutions' existence range, as well. Alumina and copper nanofluids have better heat transfer properties than regular fluids. The skin friction coefficients and Nusselt number, velocity, temperature profiles for many values of the different parameters were obtained. In addition, the solutions were shown in graphs and tables, and they were explained in detail. A comparison of the current study's results with previous results for a specific instance is undertaken to verify the findings, and excellent agreement between them is observed.

3.
Inform Med Unlocked ; 33: 101081, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36185733

RESUMEN

The task of this work is to present the solutions of the mathematical robot system (MRS) to examine the positive coronavirus cases through the artificial intelligence (AI) based Morlet wavelet neural network (MWNN). The MRS is divided into two classes, infected I ( θ ) and Robots R ( θ ) . The design of the fitness function is presented by using the differential MRS and then optimized by the hybrid of the global swarming computational particle swarm optimization (PSO) and local active set procedure (ASP). For the exactness of the AI based MWNN-PSOIPS, the comparison of the results is presented by using the proposed and reference solutions. The reliability of the MWNN-PSOASP is authenticated by extending the data into 20 trials to check the performance of the scheme by using the statistical operators with 10 hidden numbers of neurons to solve the MRS.

4.
Sci Rep ; 12(1): 12656, 2022 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-35879600

RESUMEN

A magneto couple stress nanofluid flow along with double diffusive convection is presented for peristaltic induce flow through symmetric nonuniform channel. A comprehensive mathematical model is scrutinized for couple stress nanofluid magneto nanofluids and corresponding equations of motions are tackled by applying small Reynolds and long wavelength approximation in viewing the scenario of the biological flow. Computational solution is exhibited with the help of graphical illustration for nanoparticle volume fraction, solutal concentration and temperature profiles in MATHEMTICA software. Stream function is also computed numerically by utilizing the analytical expression for nanoparticle volume fraction, solutal concentration and temperature profiles. Whereas pressure gradient profiles are investigated analytically. Impact of various crucial flow parameter on the pressure gradient, pressure rise per wavelength, nanoparticle volume fraction, solutal concentration, temperature and the velocity distribution are exhibited graphically. It has been deduced that temperature profile is significantly rise with Brownian motion, thermophoresis, Dufour effect, also it is revealed that velocity distribution really effected with strong magnetic field and with increasing non-uniformity of the micro channel. The information of current investigation will be instrumental in the development of smart magneto-peristaltic pumps in certain thermal and drug delivery phenomenon.


Asunto(s)
Convección , Peristaltismo , Modelos Teóricos , Movimiento (Física) , Reología
5.
Micromachines (Basel) ; 14(1)2022 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-36677110

RESUMEN

The present computational model is built to analyze the energy and mass transition rate through a copper and cobalt ferrite water-based hybrid nanofluid (hnf) flow caused by the fluctuating wavy spinning disk. Cobalt ferrite (CoFe2O4) and copper (Cu) nanoparticles (nps) are incredibly renowned in engineering and technological research due to their vast potential applications in nano/microscale structures, devices, materials, and systems related to micro- and nanotechnology. The flow mechanism has been formulated in the form of a nonlinear set of PDEs. That set of PDEs has been further reduced to the system of ODEs through resemblance replacements and computationally solved through the parametric continuation method. The outcomes are verified with the Matlab program bvp4c, for accuracy purposes. The statistical outputs and graphical evaluation of physical factors versus velocity, energy, and mass outlines are given through tables and figures. The configuration of a circulating disk affects the energy transformation and velocity distribution desirably. In comparison to a uniform interface, the uneven spinning surface augments energy communication by up to 15%. The addition of nanostructured materials (cobalt ferrite and copper) dramatically improves the solvent physiochemical characteristics. Furthermore, the upward and downward oscillation of the rotating disc also enhances the velocity and energy distribution.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA