RESUMEN
Potassium bromate (PB) is a general food additive, a significant by-product during water disinfection, and a carcinogen (Class II B). The compound emits toxicity depending on the extent of its exposure and dose through consumable items. The current study targeted disclosing the ameliorative efficacy of zinc oxide nanoparticles (ZnO NPs) prepared by green technology in PB-exposed Swiss albino rats. The rats were separated into six treatment groups: control without any treatment (Group I), PB alone (Group II), ZnO alone (Group III), ZnO NP alone (Group IV), PB + ZnO (Group V), and PB + ZnO NPs (Group VI). The blood and kidney samples were retrieved from the animals after following the treatment plan and kept at -20 °C until further analysis. Contrary to the control (Group I), PB-treated rats (Group II) exhibited a prominent trend in alteration in the established kidney function markers and disturbed redox status. Further, the analysis of the tissue and nuclear DNA also reinforced the biochemical results of the same treatment group. Hitherto, Groups III and IV also showed moderate toxic insults. However, Group VI showed a significant improvement from the PB-induced toxic insults compared to Group II. Hence, the present study revealed the significant therapeutic potential of the NPs against PB-induced nephrotoxicity in vivo, pleading for their usage in medicines having nephrotoxicity as a side effect or in enhancing the safety of the industrial use of PB.
Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Nanopartículas , Óxido de Zinc , Ratas , Animales , Óxido de Zinc/química , Bromatos/toxicidad , Estrés Oxidativo , Nanopartículas/química , Oxidación-Reducción , Potasio/farmacologíaRESUMEN
Kaempferol is a flavonoid that occurs in tea and in many vegetables and fruits, including broccoli, cabbage, beans, grapes, apples, and strawberries. The efficacy of Kaempferol has been demonstrated in the treatment of breast, esophageal, cervical, ovarian, and liver cancers and leukemia, which very likely arises from its prooxidant properties and the activation of pro-apoptotic pathways. Indeed, this matter has already been the focus of a number of published studies and reviews. The aim of the present study was to elucidate the antioxidant vs. prooxidant properties of flavonoids in the presence of the redox-active metal, copper (II) ion, by means of the Fenton reaction. The specific motivation of this work is that, since an increased level of Cu(II) ions is known to be associated with many disease states such as neurological conditions (Alzheimer's disease) and cancer, any interaction between these ions and flavonoids might affect the outcome of therapeutic uses of the latter. The structure of the Cu-kaempferol complex in DMSO was investigated by means of low temperature EPR spectroscopy, which confirmed the existence of at least two distinct coordination environments around the copper (II) ion. UV vis-spectra of kaempferol and its Cu(II) complex in DMSO revealed an interaction between the 5-OH (A ring) group and the 4-CO (C ring) group of kaempferol with Cu(II) ions. An ABTS assay confirmed that kaempferol acted as an effective radical scavenger, and that this effect was further enhanced in the form of the Cu(II)-kaempferol complex. Quantitative EPR spin trapping experiments, using DMPO as the spin trap, confirmed suppression of the formation of a mixture of hydroxyl, superoxide, and methyl radicals, in a Fenton reaction system, upon coordination of kaempferol to the redox-active Cu(II) ions, by 80% with respect to the free Cu(II) ions. A viscometric study revealed a better DNA-intercalating ability of the Cu-kaempferol complex than for free kaempferol, essential for conferring anticancer activity of these substances. The results of the viscometric measurements were compared with those from a DNA damage study of Cu-kaempferol complexes in a Fenton reaction system, using gel electrophoresis. At low concentrations of kaempferol (Cu-kaempferol ratios of 1:1 and 1:2), a very weak protective effect on DNA was noted, whereas when kaempferol was present in excess, a significant DNA-protective effect was found. This can be explained if the weakly intercalated kaempferol molecules present at the surface of DNA provide protection against attack by ROS that originate from the Fenton reaction involving intercalated Cu(II)-kaempferol complexes. Following the application of ROS scavengers, L-histidine, DMSO, and SOD, gel electrophoresis confirmed the formation of singlet oxygen, hydroxyl radicals, and superoxide radical anions, respectively. We propose that the prooxidant properties of Cu-kaempferol complexes may provide anticancer activity of these substances. When present in excess, kaempferol displays antioxidant properties under Cu-Fenton conditions. This suggests that kaempferol might prove a suitable candidate for the prevention or treatment of oxidative stress related medical conditions that involve a disturbed metabolism of redox metals such as copper, for example, Menkes disease, and neurological disorders, including Alzheimer's disease. For the potential use of kaempferol in clinical practice, it will be necessary to optimize the dose size and critical age of the patient so that this flavonoid may be beneficial as a preventive drug against cancer and neurological disorders.
Asunto(s)
Cobre/química , Daño del ADN , Quempferoles/farmacología , Especies Reactivas de Oxígeno/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacología , Antioxidantes/farmacología , Dimetilsulfóxido/química , Humanos , Quempferoles/química , Estructura Molecular , Compuestos Organometálicos/química , Compuestos Organometálicos/farmacología , Estrés Oxidativo/efectos de los fármacosRESUMEN
Biocompatible tryptophan-derived copper (1) and zinc (2) complexes with norharmane (ß-carboline) were designed, synthesized, characterized, and evaluated for the potential anticancer activity in vitro and in vivo. The in vitro cytotoxicity of both complexes 1 and 2 were assessed against two cancerous cells: (human breast cancer) MCF7 and (liver hepatocellular cancer) HepG2 cells with a non-tumorigenic: (human embryonic kidney) HEK293 cells. The results exhibited a potentially decent selectivity of 1 against MCF7 cells with an IC50 value of 7.8 ± 0.4 µM compared to 2 (less active, IC50 ~ 20 µM). Furthermore, we analyzed the level of glutathione, lipid peroxidation, and visualized ROS generation to get an insight into the mechanistic pathway and witnessed oxidative stress. These in vitro results were ascertained by in vivo experiments, which also supported the free radical-mediated oxidative stress. The comet assay confirmed the oxidative stress that leads to DNA damage. The histopathology of the liver also ascertained the low toxicity of 1.
Asunto(s)
Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Carbolinas/farmacología , Cobre/farmacología , Triptófano/farmacología , Animales , Neoplasias de la Mama/metabolismo , Línea Celular , Línea Celular Tumoral , Ensayo Cometa/métodos , Daño del ADN/efectos de los fármacos , Femenino , Glutatión/metabolismo , Células HEK293 , Células Hep G2 , Humanos , Peroxidación de Lípido/efectos de los fármacos , Células MCF-7 , Estrés Oxidativo/efectos de los fármacos , Ratas , Especies Reactivas de Oxígeno/metabolismo , Zinc/farmacologíaRESUMEN
Alzheimer's disease (AD) is a multifactorial neurodegenerative disorder, characterized by the formation, aggregation and accumulation of amyloid beta, perturbed metal (copper, iron and zinc) homeostasis, metal-induced oxidative stress, neuroinflammation, aberrant activity of acetylcholinesterase (AChE) and other pathologies. The aim of this review is to discuss the current therapies based on the "combination-drugs-multitargets" strategy to target multiple pathologies to block the progression of pathogenesis of AD. In addition to cholinergic and amyloid targets, a significant effort is focused on targeting the metal-induced oxidative stress component of the disease. The main focus of research is based on modifications of existing drugs with specific biological activity. Tacrine was the first AChE inhibitor to be introduced into clinical practice and has been frequently used for the design of multitarget-directed ligands. A number of hybrid compounds containing tacrine and structural moieties derived from natural sources such as flavonoids [quercetin, rutin, coumarin, gallamine, resveratrol, scutellarin, anisidine, hesperetin, (-)-epicatechin] and other molecules (melatonin, trolox) have also been applied to function as multitarget-directed ligands. Most of these hybrids are potent inhibitors of AChE and butyrylcholinesterase and also of amyloid-beta aggregation. In addition, the antioxidant functionality, represented by coumarins, melatonin and other antioxidant molecules reduces the level of oxidative stress via ROS-scavenging mechanisms, as well as via chelation of redox-active Cu and Fe, thus suppressing the formation of ROS via the Fenton reaction. Various medicinal plants are under investigation for their ability to ameliorate symptoms of AD. The therapeutic potency of huperzine A and B, ginseng, curcumin and other compounds is manifested predominantly by the inhibitory action toward AChE, antioxidant or radical-scavenging and redox metal-chelating activity, inhibition of amyloid-beta aggregation and tau-protein hyperphosphorylation and antiinflammatory activity. Flavonoids not only function as antioxidants and metal-chelating agents, but also interact with protein kinase and lipid kinase signaling pathways, and others involving mitogen-activated protein kinase, NF-kappaB and tyrosine kinase. Among the most promising group of substances with potential activity against AD are the flavonoids, including myricetin, morin, rutin, quercetin, fisetin, kaempferol, apigenin and glycitein, which have been shown, in vitro, to possess antiamyloidogenic and fibril-destabilization activity, as well as being able to act as metal chelators and to suppressing oxidative stress. In terms of the clinical use of multifunctional hybrids, herbal drugs or flavonoids against AD, some remaining challenges are to establish the ideal dose to develop effective formulations to preserve bioavailability and to determine the stage when they should be administered. If the onset of the disease could be delayed by a decade, the number of AD victims would be significantly reduced.
Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Antioxidantes/farmacología , Quelantes/farmacología , Inhibidores de la Colinesterasa/farmacología , Estrés Oxidativo/efectos de los fármacos , Preparaciones de Plantas/farmacología , Acetilcolinesterasa/metabolismo , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Butirilcolinesterasa/metabolismo , Cobre/metabolismo , Humanos , Hierro/metabolismoRESUMEN
The beneficial effects of polyphenols, predominantly in the context of oxidative stress-related diseases such as cancer, cardiovascular diseases and neurological conditions including Alzheimer's and Parkinson's diseases, have been documented by a number of papers and reviews. The antioxidant/prooxidant properties of phenolic compounds are related mainly to the number and positions of hydroxyl groups and to their redox metal (Cu, Fe) chelating capacity. In this work we studied structurally distinct phenolic molecules such as myricetin, morin, 3',4'-dihydroxy-flavone, taxifolin and 4-hydroxycoumarin, either alone or as interacting with Cu2+ ions. EPR and UV-Vis spectroscopy confirmed that the effective binding of cupric ions to phenolic compounds requires the presence of the 3-OH and 4-CO groups on the flavonoid C ring and unsaturated C2-C3 bond of the C-ring, which permits through-conjugation with the B-ring. An ABTS assay revealed that radical scavenging activities of phenolic compounds are related to their number of hydroxyl groups, planarity of the molecular skeleton, extent of delocalization and they decrease in the order: myricetin > morin > 3',4'-dihydroxyflavone ~ 4-hydroxy coumarin > taxifolin. Absorption titrations indicate that copper ions can modulate the DNA binding affinity of flavonoids via the formation of their Cu-chelates. Gel electrophoresis measurements indicated that the protective effect of the phenolic compounds decreases in the order: 3',4'-dihydroxyflavone > 4-OH coumarin > morin > taxifolin ~ myricetin. This can be explained by the fact that myricetin, taxifolin and morin form stable Cu(II) complexes capable of causing DNA damage via interaction with DNA and ROS formation via the Fenton reaction. Application of ROS scavengers revealed the formation of singlet oxygen, superoxide and hydroxyl radicals and their concerted synergistic effect on the DNA. The overall results suggest that the most pronounced DNA damage has been observed for flavonoids containing higher number of hydroxyl groups (including 3-OH group of the C ring), such as myricetin (six hydroxyl groups), morin and taxifolin (five hydroxyl groups) in the presence of Cu(II) ions. The proposed mechanism of action by which Cu(II) complexes of myricetin, morin and taxifolin interact with DNA predispose these substances to act as potential anticancer agents. The anticancer activity of phenolic compounds can be explained by their moderate prooxidant properties, which can boost ROS formation and kill cancer cells. Alternatively, slight prooxidant properties may activate antioxidant systems, including antioxidant enzymes and low molecular antioxidants such as glutathione and thus act as preventive anticancer agents.
Asunto(s)
Antioxidantes/química , Cobre/química , Daño del ADN/efectos de los fármacos , Flavonoides/química , Flavonoides/farmacología , Antineoplásicos/farmacología , Antioxidantes/farmacología , Quelantes/farmacología , Cobre/metabolismo , Cumarinas/química , Cumarinas/farmacología , Espectroscopía de Resonancia por Spin del Electrón , Humanos , Radical Hidroxilo/química , Radical Hidroxilo/metabolismo , Iones/química , Iones/metabolismo , Espectroscopía de Fotoelectrones , Polifenoles/química , Polifenoles/farmacología , Quercetina/análogos & derivados , Quercetina/química , Quercetina/farmacología , Especies Reactivas de Oxígeno/metabolismoRESUMEN
BACKGROUND: The liver disease is one of the most important traditional public health problems in Egypt. Oxidative stress is attributed to such pathological condition that further contributes to the initiation and progression of liver injury. In the present study, we have investigated if the strong antioxidant power of Nicotinamide (NA), Vitamin B2 (VB2), and Vitamin C (VC) can ameliorate TAA-induced oxidative stress-mediated liver injury in the rats. METHODS: Thirty-six albino rats were divided into six groups: Control group; TAA group (IP injection with TAA at a dosage of 200 mg/Kg three times a week for two months); TAA + NA group (rats administered with NA at a dosage of 200 mg/kg daily besides TAA as in the control); TAA + VB2 group (rats administered with vitamin B2 at a dosage of 30 mg/kg daily besides injection with TAA); TAA + VC group (rats administered with vitamin C at a dosage of 200 mg/kg daily along with injection of TAA). TAA + NA + VB + VC group (rats administered the with the three vitamins daily in TAA pre-injected at the respective doses described above). RESULTS: Treatment of rats with TAA led to a significant elevation of aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), total bilirubin, cholesterol, triglycerides, low-density lipoprotein (LDL) and tumor necrosis factor-alpha (TNF-α) in the serum samples. Moreover, malondialdehyde (MDA), hydroxyproline and nitic oxide (NO) were also significantly increased in the TAA-treated rats, while reduced glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT) were significantly compromised in the hepatic samples. Rats administered with NA, VB2, and VC as individually or in combination ameliorated the deleterious effects of TAA that was confirmed by histopathology. However, the combination of the three vitamins was found more effective as compared to each of the vitamins. CONCLUSION: Our work demonstrates that NA, VB2, and VC cross-talk with each other that act as a more potent biochemical chain of antioxidant defense against TAA-induced toxicities in vivo.
Asunto(s)
Ácido Ascórbico/administración & dosificación , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Niacinamida/administración & dosificación , Riboflavina/administración & dosificación , Animales , Antioxidantes/administración & dosificación , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Combinación de Medicamentos , Humanos , Hígado/efectos de los fármacos , Hígado/metabolismo , Estrés Oxidativo/efectos de los fármacos , Ratas , Tioacetamida/toxicidadRESUMEN
Cis-diamminedichloroplatinum (CP), a prominent anticancer drug, exerts toxic insults that are functional to various factors that compromise its antineoplastic activity. Riboflavin (RF) is an essential vitamin and photosensitizer that ameliorates CP-induced toxic insults in vivo in a dose-dependent manner. The aim of the present study is to investigate how age can influence the ameliorative effect of RF against CP-induced toxicity. Ninety male mice were divided into three age groups: young, adult, and old for the present investigation under an established treatment strategy with CP, RF, and their combinations under photoillumination for 1 mo. Their kidneys and serum samples were assessed for redox status [superoxide dismutase, catalase, reduced glutathione, malondialdehyde (MDA), carbonyl contents, and glutathione-S-transferase], biochemical analysis (renal function markers-nitric oxide), comet assay, and histopathology. The adult group showed not only the strongest resistance against the CP-induced toxicity but also the better ameliorative effect of RF followed by the young and old groups, respectively, with well-maintained redox status concomitant with the level of renal function markers, MDA, and carbonyl contents near the control values. Furthermore, comet assay and histopathological evaluation confirmed the results in a dose-dependent manner. Hence, age is an important patient-related factor that can influence the final clinical outcome under personalized chemoradiotherapy.
Asunto(s)
Cisplatino/toxicidad , Enfermedades Renales/inducido químicamente , Enfermedades Renales/tratamiento farmacológico , Riboflavina/farmacología , Factores de Edad , Animales , Antineoplásicos/toxicidad , Catalasa/metabolismo , Daño del ADN/efectos de los fármacos , Glutatión/metabolismo , Riñón/metabolismo , Riñón/patología , Enfermedades Renales/patología , Pruebas de Función Renal , Peroxidación de Lípido/efectos de los fármacos , Masculino , Ratones , Estrés Nitrosativo/efectos de los fármacos , Superóxido Dismutasa/metabolismoRESUMEN
BACKGROUND: Ant venom shows antimicrobial, anti-parasitic and anti-inflammatory activities, both in vitro and in vivo. Our recent studies have confirmed the role of samsum ant venom (SAV) as a powerful antioxidant. This study aimed to investigate whether SAV as a potential treatment for CCl4-induced acute liver toxicity in an animal (rat) model. METHODS: Thirty-two rats were assigned into four groups; the first one served as the control. The second group received a single dose of 1 ml/kg CCl4 in a 1:1 ratio with olive oil through an intraperitoneal injection. The third group received a single dose of 1 ml/kg CCl4 and then treated with SAV at a dose of 100 µg SAV twice a week for three weeks. The fourth group received a dose of 100 µg SAV only twice a week for three weeks. ELISA, RT-PCR and histopathological examinations were applied. RESULTS: Results showed that antioxidant enzymes were significantly reduced in the diseased animals. SAV was found to significantly restore the oxidative stability in diseased animals. ELISA estimation and RT-PCR analysis also showed significant upregulation of both nuclear factor (κB) NF-κB and inhibitor (κB) IκB, respectively, in the diseased animals compared to the normal ones. The expression of tumour necrosis factor alpha (TNF-α) and pro-apoptotic receptor (Fas) were also significantly up-regulated in the diseased rats. Interestingly, SAV was found to significantly restore NF-κB, IκB and TNF-α in the diseased rats to the normal values. As a result, liver enzymes, serum proteins and lipid concentrations were significantly improved by SAV in CCl4-animals in comparison with the control ones. Moreover, SAV obviously improved the hepatic tissues of the same group was. CONCLUSION: SAV treatment restores the normal biochemical and oxidative stability by improving the TNF-α/NF-κB mediated inflammation in CCL4-treated rats.
Asunto(s)
Venenos de Hormiga/farmacología , Tetracloruro de Carbono/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Animales , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Inflamación/metabolismo , Masculino , FN-kappa B/efectos de los fármacos , FN-kappa B/genética , Estrés Oxidativo/efectos de los fármacos , Sustancias Protectoras/farmacología , Ratas , Factor de Necrosis Tumoral alfa/efectos de los fármacos , Factor de Necrosis Tumoral alfa/genéticaRESUMEN
BACKGROUND: Diabetes mellitus alters oxidative stability and immune response. Here, we investigated the impact of a peptide extracted from camel milk (CMP) on the oxidative status, transcription factor kappa-B (NF-kB) and inflammatory cytokine in diabetic wounds. METHODS: Rats were assigned into three groups: control, diabetic induced (DM) and diabetic induced with multiple doses of CMP for a week (DM-CMP). RESULTS: DM showed a sharp decline in the activity of major antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT) and glutathione (GSH) compared to the control. The DM-CMP group, however, showed a noticeable replenishment in the activity of these enzymes compared to the DM group. The CMP-treated group also showed a normal level of lipid peroxidation marker (MDA) compared to the DM rats. Furthermore, ELISA analysis of serum TNF-α protein showed an elevated level in diabetic rats in comparison to control serum. However, RT-PCR analysis of locally wounded skin tissues revealed that diabetes down-regulates the RNA expression of both TNF-α and MIF genes in comparison to the control samples but that CMP was found to restore RNA expression significantly. Although it was elevated in CMP-treated rats after one day of wound incision, the NF-kB protein level was significantly decreased seven days after the incision in comparison to the animals in the diabetic group. CONCLUSION: CMP, therefore, can be seen an effective antioxidant and immune stimulant that induces oxidative stability and speeds up wound healing in diabetic model animals, making it a potential adjuvant in improving wound healing in those with diabetic conditions.
Asunto(s)
Diabetes Mellitus Experimental/tratamiento farmacológico , Factores Inmunológicos/farmacología , Leche/química , Proteína de Suero de Leche/farmacología , Animales , Camelus , Colágeno/metabolismo , Dermis/metabolismo , Dermis/patología , Dermis/fisiopatología , Diabetes Mellitus Experimental/inmunología , Evaluación Preclínica de Medicamentos , Expresión Génica , Factores Inmunológicos/uso terapéutico , Masculino , FN-kappa B/metabolismo , Oxidación-Reducción , Estrés Oxidativo , Ratas Sprague-Dawley , Factor de Necrosis Tumoral alfa/sangre , Factor de Necrosis Tumoral alfa/genética , Proteína de Suero de Leche/uso terapéutico , Cicatrización de Heridas/efectos de los fármacosRESUMEN
Ex-fissiparous planarians produce infertile cocoons or, in very rare cases, cocoons with very low fertility. Here, we describe the features of programmed cell death (PCD) occurring in the hyperplasic ovary of the ex-fissiparous freshwater planarian Dugesia arabica that may explain this infertility. Based on TEM results, we demonstrate a novel extensive co-clustering of cytoplasmic organelles, such as lysosomes and microtubules, and their fusion with autophagosomes during the early stage of oocyte cell death occurring through an autophagic pattern. During a later stage of cell death, the generation of apoptotic vesicles in the cytoplasm can be observed. The immunohistochemical labeling supports the ultrastructural results because it has been shown that the proapoptotic protein bax was more highly expressed in the hyperplasic ovary than in the normal one, whereas the anti-apoptotic protein bcl2 was slightly more highly expressed in the normal ovary compared to the hyperplasic one. TUNEL analysis of the hyperplasic ovary confirmed that the nuclei of the majority of differentiating oocytes were TUNEL-positive, whereas the nuclei of oogonia and young oocytes were TUNEL-negative; in the normal ovary, oocytes are TUNEL-negative. Considering all of these data, we suggest that the cell death mechanism of differentiating oocytes in the hyperplasic ovary of freshwater planarians is one of the most important factors that cause ex-fissiparous planarian infertility. We propose that autophagy precedes apoptosis during oogenesis, whereas apoptotic features can be observed later.
Asunto(s)
Apoptosis , Agua Dulce , Infertilidad Femenina/patología , Ovario/patología , Planarias/citología , Animales , Diferenciación Celular , Fragmentación del ADN , Femenino , Hiperplasia , Etiquetado Corte-Fin in Situ , Modelos Biológicos , Oocitos/patología , Oocitos/ultraestructura , Ovario/ultraestructura , Planarias/ultraestructura , Proteína X Asociada a bcl-2/metabolismoRESUMEN
Hepatotoxicity is one of the significant side effects of chronic diabetes mellitus (DM) besides nephrotoxicity and pancreatitis. The management of this disease is much dependent on the restoration of the liver to its maximum functionality, as it is the central metabolic organ that gets severely affected during chronic diabetes. The present study investigates if the silver nanoparticles decorated with curcumin (AgNP-Cur) can enhance the efficacy of metformin (a conventional antidiabetic drug) by countering the drug-induced hepatoxicity. Swiss albino rats were categorized into six treatment groups (n = 6): control (group I without any treatment), the remaining five groups (group II, IV, V, VI) were DM-induced by streptozocin. Group II was untreated diabetic positive control, whereas groups III was administered with AgNP-cur (5 mg/kg). Diabetic group IV treated with metformin while V and VI were treated with metformin in a combination of the two doses of NPs (5 and 10 mg/kg) according to the treatment schedule. Biochemical and histological analysis of blood and liver samples were conducted after the treatment. The groups V and VI treated with the combination exhibited remarkable improvement in fasting glucose, lipid profile (HDL and cholesterol), liver function tests (AST, ALT), toxicity markers (GGT, GST and LDH), and redox markers (GSH, MDA and CAT) in comparison to group II in most of the parameters. Histological evaluation and comet assay further consolidate these biochemical results, pleading the restoration of the cellular structure of the target tissues and their nuclear DNA. Therefore, the present study shows that the NPs can enhance the anti-diabetic action by suppression of the drug-mediated hepatoxicity via relieving from oxidative stress, toxic burden and inflammation.
RESUMEN
The efficacy of anticancer drug 5-FU is suppressed due to various factors, including severe side effects and decreased insensitivity during prolonged chemotherapy. Elevated endogenous copper (Cu) levels are one of the prominent hallmark features of cancer cells. In the present investigation, this feature was targeted in diethyl nitrosamine-phenobarbital-induced hepatocellular carcinoma (HCC) in a rat model system by an established anticancer drug, 5-FU, co-administered with copper and its chelating agent, disulfiram. After treatment with the test chemicals in HCC-induced rats, blood and liver samples were subjected to biochemical, molecular, and histopathological analyses. The analysis revealed that reactive oxygen species-mediated oxidative stress is the crucial etiological reason for the pathogenesis of HCC in rats, as evidenced by the significantly compromised activity of major antioxidant enzymes and elevated levels of oxidative damaged products with major histological alterations compared to the control. However, the combination of 5-FU with DSF demonstrated a significant improvement in most of the parameters, followed by 5-FU-Cu in the combination-treated groups. The combination treatment improved the histological details and triggered apoptosis in the cancer cells to a remarkable extent, as the levels of cleaved PARP and caspase-3 were significantly higher than those in the HCC rats treated with the drug alone. The present study envisages that manipulating the Cu-level greatly enhances the antineoplastic activity of 5-FU and sensitizes cancer cells to the increased efficacy of the drug.
RESUMEN
Hepatocellular carcinoma (HCC) is the second-largest cause of death among all cancer types. Many drugs have been used to treat the disease for a long time but have been mostly discontinued because of their side effects or the development of resistance in the patients with HCC. The administration of DZ orally is a great focus to address the clinical crisis. Daidzein (DZ) is a prominent isoflavone polyphenolic chemical found in soybeans and other leguminous plants. It has various pharmacological effects, including anti-inflammatory, antihemolytic, and antioxidant. This present study investigates the protective effect of DZ on chemically induced HCC in rat models. The DZ was administered orally four weeks before HCC induction and continued during treatment. Our study included four treatment groups: control (group 1, without any treatment), HCC-induced rats (group II), an HCC group treated with DZ at 20 mg/kg (group III), and an HCC group treated with DZ at 40 mg/kg (group IV). HCC rats showed elevation in all the HCC markers (AFP, GPC3, and VEGF), liver function markers (ALP, ALT, and AST), inflammatory markers (IL-6, TNF-α, and CRP), and lipid markers concomitant with a decrease in antioxidant enzymes and protein. However, groups III and IV demonstrated dose-dependent alleviation in the previous parameters resulting from HCC. In addition, the high dose of DZ reduces many hepatological changes in HCC rats. All study parameters improved with DZ administration. Due to its antioxidant and anti-inflammatory characteristics, DZ is a promising HCC treatment option for clinical use.
RESUMEN
Luteolin has been reviewed as a flavonoid possessing potential cardioprotective, anti-inflammatory, anti-cancer activities. Having multiple biological effects, luteolin may act as either an antioxidant or a pro-oxidant. In this work, the protective role of copper(II)-chelation by luteolin on DNA damage via the Cu-Fenton reaction was studied. EPR and UV-vis spectroscopic data demonstrated that the luteolin, lacking 3-OH group, chelates to Cu(II) via the 5-OH and 4-CO groups, respectively. EPR spin trapping experiments using DMPO spin trap confirmed that the coordination of luteolin to Cu(II) significantly suppressed formation of hydroxyl and superoxide radicals (by 80%) in a Cu-Fenton system. Absorption titrations showed that the chelation of Cu(II) by luteolin slightly increased the mild intercalation strength of its interaction with DNA, as compared with free luteolin. Comparison with kaempferol and quercetin revealed, that the strength of the interaction between the free flavonoids/Cu-flavonoid complexes with DNA is only mildly affected by the presence/absence of 3-OH group. Due to the differences in the sensitivities of absorption titrations and viscometry, the latter confirmed weaker DNA intercalating efficiency of Cu-luteolin complex than does free luteolin. A dose dependent protective effect of luteolin against ROS-induced DNA damage was observed using gel electrophoresis. This effect was more pronounced compared to quercetin and kaempferol. In conclusion, the administration of luteolin to patients suffering from oxidative stress-related diseases with disturbed Cu-metabolism such as Alzheimer's diseases (antioxidant effect) and certain cancers (prooxidant effect) may have several health benefits.
Asunto(s)
Cobre/química , Daño del ADN , Luteolina/química , Plásmidos/química , Catálisis , Humanos , Oxidación-ReducciónRESUMEN
The bioactivity of nanoparticles has engendered a promise in scientific communities for developing novel therapeutic strategies. This study investigated the protective effects of selenium nanoparticles (SeNPs) against kidney injury in streptozocin-induced diabetes during pregnant (DDP) rats. The female rats were separated into three groups (n = 8). Group 1 received the vehicle, normal saline. Group 2 received a single intraperitoneal dose of 50 mg/kg of streptozocin. Group 3 received a single intraperitoneal injection of 50 mg/kg of streptozocin, followed by treatment with SeNPs at a dose of 2.5 mg/kg twice a week for 6 weeks (1 week before gestation and continuing for 5 additional weeks). The structure formed by the fabricated SeNPs with citric acid in the presence of ascorbic acid indicated that nano-Se was associated with a carbon matrix. The diabetic group suffered from polyuria, a reduction in body weight, delayed gestation, and only 40% successful pregnancy compared with the control rats. Interestingly, SeNPs significantly reduced the rate of urination, accelerated the start of gestation, and increased the percentage of successful pregnancy in females with DM. Severe changes were observed in the pancreatic ß-cells of the diabetic rats, with darkly stained and fragmented chromatin in nuclei, while SeNPs partially restored the normal morphological features of the pancreatic ß-cells. The concentrations of urea, creatinine, MDA, and glucose were significantly increased in the diabetic rats, while GSH was significantly reduced compared with controls. Interestingly, SeNPs restored all of these parameters to values at or near control levels. SeNPs were capable of improving the histological structure of the kidney in mothers with DDP. Hence, the present work is relevant to GDM demonstrating SeNPs shielding the kidney structure and function in vivo.
Asunto(s)
Diabetes Mellitus Experimental , Nefropatías Diabéticas , Nanopartículas , Selenio , Animales , Diabetes Mellitus Experimental/tratamiento farmacológico , Nefropatías Diabéticas/tratamiento farmacológico , Suplementos Dietéticos , Femenino , Embarazo , RatasRESUMEN
BACKGROUND: Epidemiological studies have shown that the offspring of mothers who experience diabetes mellitus during pregnancy are seven times more likely to develop health complications later in life compared to offspring born to nondiabetic mothers. AIM OF THE STUDY: We investigated whether supplementation with a natural antioxidant (thymoquinone; TQ) in female rats with streptozotocin (STZ)-induced gestational diabetes (GD) improved diabetic complications and T cell immune responses in their offspring. METHODS: Three groups of female rats were tested: nondiabetics, diabetics treated with TQ during pregnancy and lactation periods and diabetics that were not treated with TQ (n=10 female rats in each group). RESULTS: Our data demonstrated a significant decrease in the numbers of neonates born to diabetic rats compared with those born to control rats. GD led to macrosomic pups with several postpartum complications, such as a significant increase in plasma levels of the pro-inflammatory cytokines IL-1ß, IL-6, and TNF-α (but not of IL-10); a marked decrease in the plasma level of IL-2; a marked reduction in the proliferative capacity of superantigen (SEB)-stimulated T-lymphocytes; and an obvious reduction in the number of circulating and thymus homing T cells. TQ supplementation of diabetic mothers during pregnancy and lactation periods had an obvious and significant effect on the number and mean body weight of neonates. Furthermore, TQ significantly restored the IL-2 level and T cell proliferation and subsequently rescued both circulating and thymus homing T cells in the offspring. CONCLUSIONS: Our data suggest that nutritional supplementation of GD mothers with the natural antioxidant TQ during pregnancy and lactation periods improves diabetic complications and maintains an efficient T cell immune response in their offspring, providing a protective effect in later life.
Asunto(s)
Benzoquinonas/uso terapéutico , Complicaciones de la Diabetes/prevención & control , Diabetes Mellitus Experimental/complicaciones , Embarazo en Diabéticas , Efectos Tardíos de la Exposición Prenatal/prevención & control , Subgrupos de Linfocitos T/inmunología , Actinas/metabolismo , Animales , Antioxidantes/administración & dosificación , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Apoptosis/efectos de los fármacos , Apoptosis/inmunología , Benzoquinonas/administración & dosificación , Benzoquinonas/farmacología , Glucemia/metabolismo , Proliferación Celular/efectos de los fármacos , Citocinas/sangre , Complicaciones de la Diabetes/sangre , Complicaciones de la Diabetes/inmunología , Complicaciones de la Diabetes/mortalidad , Diabetes Mellitus Experimental/sangre , Femenino , Interleucina-2/sangre , Tamaño de la Camada/efectos de los fármacos , Activación de Linfocitos/inmunología , Recuento de Linfocitos , Embarazo , Efectos Tardíos de la Exposición Prenatal/sangre , Efectos Tardíos de la Exposición Prenatal/inmunología , Efectos Tardíos de la Exposición Prenatal/mortalidad , Ratas , Ratas Endogámicas , Especies Reactivas de Oxígeno/metabolismo , Subgrupos de Linfocitos T/efectos de los fármacos , Subgrupos de Linfocitos T/metabolismo , Subgrupos de Linfocitos T/patologíaRESUMEN
Many active molecules used in the development of new drugs are produced by ants. Present study assessed antioxidant and anti-inflammatory properties of Samsum ant venom (SAV) extract in carbon tetrachloride (CCL4)-induced spleen toxicity. Toxicity and oxidative stress were measured in four experimental groups: a negative control group without any treatment, a positive control group (CCl4-treated rats; a single dose of 1 ml/kg CCL4), an experimental group of CCl4-treated rats co-treated daily with SAV (100 µl), and a group to determine safe use with rats treated only with SAV (100 µl) daily for 3 weeks. CCl4-treatment led to an elevation in toxicity and oxidative stress. CCl4 significantly elevated malondialdehyde (MDA) levels, as well as expression of inhibitor of κB (IκB) and tumor necrosis factor-α (TNF-α) proteins. On the other hand, a decrease in glutathione (GSH) and catalase (CAT) levels were detected in CCl4-treated rats. Co-treatment with SAV was found to reduce these inflammatory and oxidative parameters. SAV elucidated a significant recovery of MDA concentration as well as a significant restoration in GSH levels compared to CCl4-treated rats; however, SAV increased CAT levels compared to normal rats. Hence, SAV was found to restore splenomegaly induced in CCl4-treated rats. Histopathological analysis also favored the biochemical analysis showing improvement in splenic architecture in CCl4 and SAV co-treated rats. The antioxidant properties of SAV may potentially enhance anti-inflammatory actions and improve spleen structure and function in CCl4-challenged rats.
Asunto(s)
Venenos de Hormiga , Enfermedad Hepática Inducida por Sustancias y Drogas , Animales , Venenos de Hormiga/metabolismo , Antioxidantes/metabolismo , Tetracloruro de Carbono/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Hígado/metabolismo , Estrés Oxidativo , Extractos Vegetales/metabolismo , Ratas , BazoRESUMEN
Melatonin (ML) is a potent antioxidant that reduces oxidative stress. This study was designed to examine the protective effect of melatonin on potassium dichromate- (PDC-) induced male reproductive toxicity. Forty rats were divided into five groups: the control group, rats administered PDC orally (10 mg/kg body weight) for eight weeks, rats administered ML intraperitoneally at doses of either 2.5 or 5 mg/kg followed by the administration of PDC, and rats administered 5 mg/kg ML only. The treatment of rats with PDC led to a decrease in the levels of plasma sex hormones, glutathione, superoxide dismutase, catalase, carnitine, sperm count, and motility. Testicular malondialdehyde levels, nitric oxide concentrations, and abnormalities increased significantly in the PDC group. Melatonin administration to the PDC-treated rats reduced the increase of malondialdehyde and restored the activity of antioxidant enzymes (superoxide dismutase and catalase), glutathione, and sex hormone levels. Moreover, ML attenuated PDC-induced increase in levels of tumor necrosis factor-alpha or interleukin-6. ML alleviated histopathological changes and an increase of p53-positive immune reaction due to PDC. Furthermore, ML inhibited PDC-induced decrease in the DNA content of spermatogenic cells. This study proposed that melatonin may be useful in mitigating oxidative stress-induced testicular damage due to potassium dichromate toxicity.
Asunto(s)
Melatonina/farmacología , Estrés Oxidativo , Dicromato de Potasio , Testículo/efectos de los fármacos , Animales , Antioxidantes/metabolismo , Peso Corporal , Catalasa/metabolismo , Cromatografía Líquida de Alta Presión , Glutatión/metabolismo , Hormonas Esteroides Gonadales/sangre , Inflamación , Peroxidación de Lípido , Masculino , Tamaño de los Órganos , Ratas , Ratas Wistar , Recuento de Espermatozoides , Motilidad Espermática/efectos de los fármacos , Espermatozoides , Superóxido Dismutasa/metabolismoRESUMEN
BACKGROUND: Hepatotoxicity remains an important clinical challenge. Hepatotoxicity observed in response to toxins and hazardous chemicals may be alleviated by delivery of the curcumin in silver nanoparticles (AgNPs-curcumin). In this study, we examined the impact of AgNPs-curcumin in a mouse model of carbon tetrachloride (CCl4)-induced hepatic injury. METHODS: Male C57BL/6 mice were divided into three groups (n=8 per group). Mice in group 1 were treated with vehicle control alone, while mice in Group 2 received a single intraperitoneal injection of 1 ml/kg CCl4 in liquid paraffin (1:1 v/v). Mice in group 3 were treated with 2.5 mg/kg AgNPs-curcumin twice per week for three weeks after the CCl4 challenge. RESULTS: Administration of CCL4 resulted in oxidative dysregulation, including significant reductions in reduced glutathione and concomitant elevations in the level of malondialdehyde (MDA). CCL4 challenge also resulted in elevated levels of serum aspartate transaminase (AST) and alanine transaminase (ALT); these findings were associated with the destruction of hepatic tissues. Treatment with AgNPs-curcumin prevented oxidative imbalance, hepatic dysfunction, and tissue destruction. A comet assay revealed that the CCl4 challenge resulted in significant DNA damage as documented by a 70% increase in nuclear DNA tail-length; treatment with AgNPscurcumin inhibited the CCL4-mediated increase in nuclear DNA tail-length by 34%. CONCLUSION: Administration of AgNPs-curcumin resulted in significant anti-oxidant activity in vivo. This agent has the potential to prevent hepatic tissue destruction and DNA damage that results from direct exposure to CCL4.