Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PLoS Genet ; 19(8): e1010876, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37566621

RESUMEN

The Tup1-Cyc8 complex in Saccharomyces cerevisiae was one of the first global co-repressors of gene transcription discovered. However, despite years of study, a full understanding of the contribution of Tup1p and Cyc8p to complex function is lacking. We examined TUP1 and CYC8 single and double deletion mutants and show that CYC8 represses more genes than TUP1, and that there are genes subject to (i) unique repression by TUP1 or CYC8, (ii) redundant repression by TUP1 and CYC8, and (iii) there are genes at which de-repression in a cyc8 mutant is dependent upon TUP1, and vice-versa. We also reveal that Tup1p and Cyc8p can make distinct contributions to commonly repressed genes most likely via specific interactions with different histone deacetylases. Furthermore, we show that Tup1p and Cyc8p can be found independently of each other to negatively regulate gene transcription and can persist at active genes to negatively regulate on-going transcription. Together, these data suggest that Tup1p and Cyc8p can associate with active and inactive genes to mediate distinct negative and positive regulatory roles when functioning within, and possibly out with the complex.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Nucleares/genética , Transcripción Genética , Regulación Fúngica de la Expresión Génica , Proteínas Fúngicas/genética
2.
Nucleic Acids Res ; 50(17): 9797-9813, 2022 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-36095118

RESUMEN

Chromatin complexes control a vast number of epigenetic developmental processes. Filamentous fungi present an important clade of microbes with poor understanding of underlying epigenetic mechanisms. Here, we describe a chromatin binding complex in the fungus Aspergillus nidulans composing of a H3K4 histone demethylase KdmB, a cohesin acetyltransferase (EcoA), a histone deacetylase (RpdA) and a histone reader/E3 ligase protein (SntB). In vitro and in vivo evidence demonstrate that this KERS complex is assembled from the EcoA-KdmB and SntB-RpdA heterodimers. KdmB and SntB play opposing roles in regulating the cellular levels and stability of EcoA, as KdmB prevents SntB-mediated degradation of EcoA. The KERS complex is recruited to transcription initiation start sites at active core promoters exerting promoter-specific transcriptional effects. Interestingly, deletion of any one of the KERS subunits results in a common negative effect on morphogenesis and production of secondary metabolites, molecules important for niche securement in filamentous fungi. Consequently, the entire mycotoxin sterigmatocystin gene cluster is downregulated and asexual development is reduced in the four KERS mutants. The elucidation of the recruitment of epigenetic regulators to chromatin via the KERS complex provides the first mechanistic, chromatin-based understanding of how development is connected with small molecule synthesis in fungi.


Asunto(s)
Aspergillus nidulans , Cromatina , Acetiltransferasas/metabolismo , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Cromatina/genética , Cromatina/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Genes Reguladores , Histona Desacetilasas/metabolismo , Histona Demetilasas/metabolismo , Histonas/genética , Histonas/metabolismo , Esterigmatocistina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
3.
Cell Microbiol ; 22(6): e13192, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32068947

RESUMEN

For eukaryotes like fungi to regulate biological responses to environmental stimuli, various signalling cascades are utilized, like the highly conserved mitogen-activated protein kinase (MAPK) pathways. In the model fungus Aspergillus nidulans, a MAPK pathway known as the pheromone module regulates development and the production of secondary metabolites (SMs). This pathway consists five proteins, the three kinases SteC, MkkB and MpkB, the adaptor SteD and the scaffold HamE. In this study, homologs of these five pheromone module proteins have been identified in the plant and human pathogenic fungus Aspergillus flavus. We have shown that a tetrameric complex consisting of the three kinases and the SteD adaptor is assembled in this species. It was observed that this complex assembles in the cytoplasm and that MpkB translocates into the nucleus. Deletion of steC, mkkB, mpkB or steD results in abolishment of both asexual sporulation and sclerotia production. This complex is required for the positive regulation of aflatoxin production and negative regulation of various SMs, including leporin B and cyclopiazonic acid (CPA), likely via MpkB interactions in the nucleus. These data highlight the conservation of the pheromone module in Aspergillus species, signifying the importance of this pathway in regulating fungal development and secondary metabolism.


Asunto(s)
Aflatoxinas/metabolismo , Aspergillus flavus/crecimiento & desarrollo , Aspergillus flavus/metabolismo , Proteínas Fúngicas/metabolismo , Feromonas/metabolismo , Aflatoxina B1 , Aspergillus flavus/genética , Aspergillus nidulans , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fenotipo , Metabolismo Secundario
4.
Nucleic Acids Res ; 45(8): 4413-4430, 2017 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-28115623

RESUMEN

The Saccharomyces cerevisiae FLO1 gene encodes a cell wall protein that imparts cell-cell adhesion. FLO1 transcription is regulated via the antagonistic activities of the Tup1-Cyc8 co-repressor and Swi-Snf co-activator complexes. Tup1-Cyc8 represses transcription through the organization of strongly positioned, hypoacetylated nucleosomes across gene promoters. Swi-Snf catalyzes remodeling of these nucleosomes in a mechanism involving histone acetylation that is poorly understood. Here, we show that FLO1 de-repression is accompanied by Swi-Snf recruitment, promoter histone eviction and Sas3 and Ada2(Gcn5)-dependent histone H3K14 acetylation. In the absence of H3K14 acetylation, Swi-Snf recruitment and histone eviction proceed, but transcription is reduced, suggesting these processes, while essential, are not sufficient for de-repression. Further analysis in the absence of H3K14 acetylation reveals RNAP II recruitment at the FLO1 promoter still occurs, but RNAP II is absent from the gene-coding region, demonstrating Sas3 and Ada2-dependent histone H3 acetylation is required for transcription elongation. Analysis of the transcription kinetics at other genes reveals shared mechanisms coupled to a distinct role for histone H3 acetylation, essential at FLO1, downstream of initiation. We propose histone H3 acetylation in the coding region provides rate-limiting control during the transition from initiation to elongation which dictates whether the gene is permissive for transcription.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Histona Acetiltransferasas/genética , Histonas/genética , Lectinas de Unión a Manosa/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Acetilación , Pared Celular/genética , Pared Celular/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Histona Acetiltransferasas/metabolismo , Histonas/metabolismo , Lectinas de Unión a Manosa/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleosomas/química , Nucleosomas/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Elongación de la Transcripción Genética , Factores de Transcripción/metabolismo
5.
Microb Genom ; 10(3)2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38529898

RESUMEN

The transcriptome from a Saccharomyces cerevisiae tup1 deletion mutant was one of the first comprehensive yeast transcriptomes published. Subsequent transcriptomes from tup1 and cyc8 mutants firmly established the Tup1-Cyc8 complex as predominantly acting as a repressor of gene transcription. However, transcriptomes from tup1/cyc8 gene deletion or conditional mutants would all have been influenced by the striking flocculation phenotypes that these mutants display. In this study, we have separated the impact of flocculation from the transcriptome in a cyc8 conditional mutant to reveal those genes (i) subject solely to Cyc8p-dependent regulation, (ii) regulated by flocculation only and (iii) regulated by Cyc8p and further influenced by flocculation. We reveal a more accurate list of Cyc8p-regulated genes that includes newly identified Cyc8p-regulated genes that were masked by the flocculation phenotype and excludes genes which were indirectly influenced by flocculation and not regulated by Cyc8p. Furthermore, we show evidence that flocculation exerts a complex and potentially dynamic influence upon global gene transcription. These data should be of interest to future studies into the mechanism of action of the Tup1-Cyc8 complex and to studies involved in understanding the development of flocculation and its impact upon cell function.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas Represoras/genética , Proteínas de Saccharomyces cerevisiae/genética , Floculación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA