Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Hepatol ; 71(6): 1193-1205, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31433301

RESUMEN

BACKGROUND & AIMS: Hepatic recruitment of monocyte-derived macrophages (MoMFs) contributes to the inflammatory response in non-alcoholic steatohepatitis (NASH). However, how hepatocyte lipotoxicity promotes MoMF inflammation is unclear. Here we demonstrate that lipotoxic hepatocyte-derived extracellular vesicles (LPC-EVs) are enriched with active integrin ß1 (ITGß1), which promotes monocyte adhesion and liver inflammation in murine NASH. METHODS: Hepatocytes were treated with either vehicle or the toxic lipid mediator lysophosphatidylcholine (LPC); EVs were isolated from the conditioned media and subjected to proteomic analysis. C57BL/6J mice were fed a diet rich in fat, fructose, and cholesterol (FFC) to induce NASH. Mice were treated with anti-ITGß1 neutralizing antibody (ITGß1Ab) or control IgG isotype. RESULTS: Ingenuity® Pathway Analysis of the LPC-EV proteome indicated that ITG signaling is an overrepresented canonical pathway. Immunogold electron microscopy and nanoscale flow cytometry confirmed that LPC-EVs were enriched with activated ITGß1. Furthermore, we showed that LPC treatment in hepatocytes activates ITGß1 and mediates its endocytic trafficking and sorting into EVs. LPC-EVs enhanced monocyte adhesion to liver sinusoidal cells, as observed by shear stress adhesion assay. This adhesion was attenuated in the presence of ITGß1Ab. FFC-fed, ITGß1Ab-treated mice displayed reduced inflammation, defined by decreased hepatic infiltration and activation of proinflammatory MoMFs, as assessed by immunohistochemistry, mRNA expression, and flow cytometry. Likewise, mass cytometry by time-of-flight on intrahepatic leukocytes showed that ITGß1Ab reduced levels of infiltrating proinflammatory monocytes. Furthermore, ITGß1Ab treatment significantly ameliorated liver injury and fibrosis. CONCLUSIONS: Lipotoxic EVs mediate monocyte adhesion to LSECs mainly through an ITGß1-dependent mechanism. ITGß1Ab ameliorates diet-induced NASH in mice by reducing MoMF-driven inflammation, suggesting that blocking ITGß1 is a potential anti-inflammatory therapeutic strategy in human NASH. LAY SUMMARY: Herein, we report that a cell adhesion molecule termed integrin ß1 (ITGß1) plays a key role in the progression of non-alcoholic steatohepatitis (NASH). ITGß1 is released from hepatocytes under lipotoxic stress as a cargo of extracellular vesicles, and mediates monocyte adhesion to liver sinusoidal endothelial cells, which is an essential step in hepatic inflammation. In a mouse model of NASH, blocking ITGß1 reduces liver inflammation, injury and fibrosis. Hence, ITGß1 inhibition may serve as a new therapeutic strategy for NASH.


Asunto(s)
Anticuerpos Neutralizantes , Adhesión Celular/inmunología , Hepatocitos/inmunología , Integrina beta1/inmunología , Lisofosfatidilcolinas/farmacología , Macrófagos/inmunología , Enfermedad del Hígado Graso no Alcohólico/inmunología , Animales , Anticuerpos Neutralizantes/administración & dosificación , Anticuerpos Neutralizantes/inmunología , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Vesículas Extracelulares/inmunología , Hepatocitos/metabolismo , Humanos , Cirrosis Hepática/prevención & control , Ratones , Monocitos/inmunología , Enfermedad del Hígado Graso no Alcohólico/terapia
2.
Hepatol Commun ; 2(12): 1493-1512, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30556038

RESUMEN

With the epidemic of obesity, nonalcoholic fatty liver disease (NAFLD) has become the most common pediatric liver disease. The influence of a perinatal obesity-inducing diet (OID) on the development and progression of NAFLD in offspring is important but incompletely studied. Hence, we fed breeding pairs of C57BL/6J mice during gestation and lactation (perinatally) either chow or an OID rich in fat, fructose, and cholesterol (FFC). The offspring were weaned to either chow or an FFC diet, generating four groups: perinatal (p)Chow-Chow, pChow-FFC, pFFC-Chow, and pFFC-FFC. Mice were sacrificed at 10 weeks of age. We examined the whole-liver transcriptome by RNA sequencing (RNA-seq) and whole-liver genome methylation by reduced representation bisulfite sequencing (RRBS). Our results indicated that the pFFC-FFC mice had a significant increase in hepatic steatosis, injury, inflammation, and fibrosis, as assessed histologically and biochemically. We identified 189 genes that were differentially expressed and methylated in the pFFC-FFC mice versus the pChow-FFC mice. Gene set enrichment analysis identified hepatic fibrosis/hepatic stellate cell activation as the top canonical pathway, suggesting that the differential DNA methylation events in the mice exposed to the FFC diet perinatally were associated with a profibrogenic transcriptome. To verify that this finding was consistent with perinatal nutritional reprogramming of the methylome, we exposed pFFC-Chow mice to an FFC diet in adulthood. These mice developed significant hepatic steatosis, injury, inflammation, and more importantly fibrosis when compared to the appropriate controls. Conclusion: Perinatal exposure to an OID primes the immature liver for an accentuated fibrosing nonalcoholic steatohepatitis (NASH) phenotype, likely through nutritional reprogramming of the offspring methylome. These data have potential clinical implications for monitoring children of obese mothers and risk stratification of children with NAFLD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA