RESUMEN
It has been documented that the uterus plays a key cardio-protective role in pre-menopausal women, which is supported by uterine cell therapy, to preserve cardiac functioning post-myocardial infarction, being effective among females. However, whether such therapies would also be beneficial among males is still largely unknown. In this study, we aimed to fill in this gap in knowledge by examining the effects of transplanted uterine cells on infarcted male hearts. We identified, based on major histocompatibility complex class I (MHC-I) expression levels, 3 uterine reparative cell populations: MHC-I(neg), MHC-I(mix), and MHC-I(pos). In vitro, MHC-I(neg) cells showed higher levels of pro-angiogenic, pro-survival, and anti-inflammatory factors, compared to MHC-I(mix) and MHC-I(pos). Furthermore, when cocultured with allogeneic mixed leukocytes, MHC-I(neg) had lower cytotoxicity and leukocyte proliferation. In particular, CD8+ cytotoxic T cells significantly decreased, while CD4+CD25+ Tregs and CD4-CD8- double-negative T cells significantly increased when cocultured with MHC-I(neg), compared to MHC-I(mix) and MHC-I(pos) cocultures. In vivo, MHC-I(neg) as well as MHC-I(mix) were found under both syngeneic and allogeneic transplantation in infarcted male hearts, to significantly improve cardiac function and reduce the scar size, via promoting angiogenesis in the infarcted area. All of these findings thus support the view that males could also benefit from the cardio-protective effects observed among females, via cell therapy approaches involving the transplantation of immuno-privileged uterine reparative cells in infarcted hearts.
Asunto(s)
Infarto del Miocardio , Útero , Infarto del Miocardio/terapia , Infarto del Miocardio/patología , Masculino , Femenino , Animales , Útero/irrigación sanguínea , Ratones , Ratones Endogámicos C57BL , Antígenos de Histocompatibilidad Clase I/metabolismoRESUMEN
AIMS/HYPOTHESIS: A hallmark chronic complication of type 2 diabetes mellitus is vascular hyperpermeability, which encompasses dysfunction of the cerebrovascular endothelium and the subsequent development of associated cognitive impairment. The present study tested the hypothesis that during type 2 diabetes circulating small extracellular vesicles (sEVs) exhibit phenotypic changes that facilitate pathogenic disruption of the vascular barrier. METHODS: sEVs isolated from the plasma of a mouse model of type 2 diabetes and from diabetic human individuals were characterised for their ability to disrupt the endothelial cell (EC) barrier. The contents of sEVs and their effect on recipient ECs were assessed by proteomics and identified pathways were functionally interrogated with small molecule inhibitors. RESULTS: Using intravital imaging, we found that diabetic mice (Leprdb/db) displayed hyperpermeability of the cerebrovasculature. Enhanced vascular leakiness was recapitulated following i.v. injection of sEVs from diabetic mice into non-diabetic recipient mice. Characterisation of circulating sEV populations from the plasma of diabetic mice and humans demonstrated increased quantity and size of sEVs compared with those isolated from non-diabetic counterparts. Functional experiments revealed that sEVs from diabetic mice or humans induced the rapid and sustained disruption of the EC barrier through enhanced paracellular and transcellular leak but did not induce inflammation. Subsequent sEV proteome and recipient EC phospho-proteome analysis suggested that extracellular vesicles (sEVs) from diabetic mice and humans modulate the MAPK/MAPK kinase (MEK) and Rho-associated protein kinase (ROCK) pathways, cell-cell junctions and actin dynamics. This was confirmed experimentally. Treatment of sEVs with proteinase K or pre-treatment of recipient cells with MEK or ROCK inhibitors reduced the hyperpermeability-inducing effects of circulating sEVs in the diabetic state. CONCLUSIONS/INTERPRETATION: Diabetes is associated with marked increases in the concentration and size of circulating sEVs. The modulation of sEV-associated proteins under diabetic conditions can induce vascular leak through activation of the MEK/ROCK pathway. These data identify a new paradigm by which diabetes can induce hyperpermeability and dysfunction of the cerebrovasculature and may implicate sEVs in the pathogenesis of cognitive decline during type 2 diabetes.
Asunto(s)
Permeabilidad Capilar , Diabetes Mellitus Tipo 2 , Vesículas Extracelulares , Animales , Vesículas Extracelulares/metabolismo , Ratones , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Humanos , Masculino , Diabetes Mellitus Experimental/metabolismo , Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Proteómica , Ratones Endogámicos C57BLRESUMEN
AIMS: To date, stroke remains one of the leading causes of death and disability worldwide. Nearly three-quarters of all strokes occur in the elderly (>65 years old), and a vast majority of these individuals develop debilitating cognitive impairments that can later progress into dementia. Currently, there are no therapies capable of reversing the cognitive complications which arise following a stroke. Instead, current treatment options focus on preventing secondary injuries, as opposed to improving functional recovery. METHODS: We reconstituted aged (20-month old) mice with Sca-1+ bone marrow (BM) hematopoietic stem cells isolated from aged or young (2-month old) EGFP+ donor mice. Three months later the chimeric aged mice underwent cerebral ischemia/reperfusion by bilateral common carotid artery occlusion (BCCAO), after which cognitive function was evaluated. Immunohistochemical analysis was performed to evaluate host and recipient cells in the brain following BCCAO. RESULTS: Young Sca-1+ cells migrate to the aged brain and give rise to beneficial microglial-like cells that ameliorate stroke-induced loss of cognitive function on tasks targeting the hippocampus and cerebellum. We also found that young Sca-1+ cell-derived microglial-like cells possess neuroprotective properties as they do not undergo microgliosis upon migrating to the ischemic hippocampus, whereas the cells originating from old Sca-1+ cells proliferate extensively and skew toward a pro-inflammatory phenotype following injury. CONCLUSIONS: This study provides a proof-of-principle demonstrating that young BM Sca-1+ cells play a pivotal role in reversing stroke-induced cognitive impairments and protect the aged brain against secondary injury by attenuating the host cell response to injury.
Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular , Animales , Células de la Médula Ósea , Isquemia Encefálica/complicaciones , Hipocampo , Ratones , Células Madre , Accidente Cerebrovascular/complicacionesRESUMEN
Cardiac cachexia is a catabolic muscle-wasting syndrome observed in approximately 1 in 10 patients with heart failure. Increased skeletal muscle atrophy leads to frailty and limits mobility, which impacts quality of life, exacerbates clinical care, and is associated with higher rates of mortality. Heart failure is known to exhibit a wide range of prevalence and severity when examined across individuals of different ages and with comorbidities related to diabetes, renal failure, and pulmonary dysfunction. It is also recognized that men and women exhibit striking differences in the pathophysiology of heart failure, as well as skeletal muscle homeostasis. Given that both skeletal muscle and heart failure physiology are in part sex-dependent, the diagnosis and treatment of cachexia in patients with heart failure may depend on a comprehensive examination of how these organs interact. In this review, we explore the potential for sex-specific differences in cardiac cachexia. We summarize advantages and disadvantages of clinical methods used to measure muscle mass and function and provide alternative measurements that should be considered in preclinical studies. In addition, we summarize sex-dependent effects on muscle wasting in preclinical models of heart failure, disuse, and cancer. Lastly, we discuss the endocrine function of the heart and outline unanswered questions that could directly impact patient care.
Asunto(s)
Caquexia , Insuficiencia Cardíaca , Caquexia/etiología , Femenino , Humanos , Masculino , Músculo Esquelético/metabolismo , Atrofia Muscular/etiología , Atrofia Muscular/metabolismo , Calidad de VidaRESUMEN
BACKGROUND: Type 2 diabetes (T2D) is associated with coronary microvascular dysfunction, which is thought to contribute to compromised diastolic function, ultimately culminating in heart failure with preserved ejection fraction (HFpEF). The molecular mechanisms remain incompletely understood, and no early diagnostics are available. We sought to gain insight into biomarkers and potential mechanisms of microvascular dysfunction in obese mouse (db/db) and lean rat (Goto-Kakizaki) pre-clinical models of T2D-associated diastolic dysfunction. METHODS: The microRNA (miRNA) content of circulating extracellular vesicles (EVs) was assessed in T2D models to identify biomarkers of coronary microvascular dysfunction/rarefaction. The potential source of circulating EV-encapsulated miRNAs was determined, and the mechanisms of induction and the function of candidate miRNAs were assessed in endothelial cells (ECs). RESULTS: We found an increase in miR-30d-5p and miR-30e-5p in circulating EVs that coincided with indices of coronary microvascular EC dysfunction (i.e., markers of oxidative stress, DNA damage/senescence) and rarefaction, and preceded echocardiographic evidence of diastolic dysfunction. These miRNAs may serve as biomarkers of coronary microvascular dysfunction as they are upregulated in ECs of the left ventricle of the heart, but not other organs, in db/db mice. Furthermore, the miR-30 family is secreted in EVs from senescent ECs in culture, and ECs with senescent-like characteristics are present in the db/db heart. Assessment of miR-30 target pathways revealed a network of genes involved in fatty acid biosynthesis and metabolism. Over-expression of miR-30e in cultured ECs increased fatty acid ß-oxidation and the production of reactive oxygen species and lipid peroxidation, while inhibiting the miR-30 family decreased fatty acid ß-oxidation. Additionally, miR-30e over-expression synergized with fatty acid exposure to down-regulate the expression of eNOS, a key regulator of microvascular and cardiomyocyte function. Finally, knock-down of the miR-30 family in db/db mice decreased markers of oxidative stress and DNA damage/senescence in the microvascular endothelium. CONCLUSIONS: MiR-30d/e represent early biomarkers and potential therapeutic targets that are indicative of the development of diastolic dysfunction and may reflect altered EC fatty acid metabolism and microvascular dysfunction in the diabetic heart.
Asunto(s)
Diabetes Mellitus Tipo 2 , Células Endoteliales/patología , Ácidos Grasos/metabolismo , Insuficiencia Cardíaca , MicroARNs , Animales , Biomarcadores , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/genética , Células Endoteliales/metabolismo , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Ratas , Volumen SistólicoRESUMEN
Obesity and metabolic syndrome commonly underlie cardiovascular disease. ClockΔ19/Δ19 mice fed a normal diet develop obesity and metabolic syndrome; however, it is not known whether they develop or are resilient to cardiovascular disease. We found that ClockΔ19/Δ19 mice do not develop cardiac dysfunction, despite their underlying conditions. Moreover, in contrast to wild-type controls fed a high-fat diet (HFD), ClockΔ19/Δ19 HFD mice still do not develop cardiovascular disease. Indeed, ClockΔ19/Δ19 HFD mice have preserved heart weight despite their obesity, no cardiomyocyte hypertrophy, and preserved heart structure and function, even after 24 wk of a HFD. To determine why ClockΔ19/Δ19 mice are resilient to cardiac dysfunction despite their underlying obesity and metabolic conditions, we examined global cardiac gene expression profiles by microarray and bioinformatics analyses, revealing that oxidative stress pathways were involved. We examined the pathways in further detail and found that 1) SIRT-dependent oxidative stress pathways were not directly involved in resilience; 2) 4-hydroxynonenal (4-HNE) increased in wild-type HFD but not ClockΔ19/Δ19 mice, suggesting less reactive oxygen species in ClockΔ19/Δ19 mice; 3) cardiac catalase (CAT) and glutathione peroxidase (GPx) increased, suggesting strong antioxidant defenses in the hearts of ClockΔ19/Δ19 mice; and 4) Pparγ was upregulated in the hearts of ClockΔ19/Δ19 mice; this circadian-regulated gene drives transcription of CAT and GPx, providing a molecular basis for resilience in the ClockΔ19/Δ19 mice. These findings shed new light on the circadian regulation of oxidative stress and demonstrate an important role for the circadian mechanism in resilience to cardiovascular disease.NEW & NOTEWORTHY We examined whether obesity and metabolic syndrome underlie the development of cardiac dysfunction in circadian mutant ClockΔ19/Δ19 mice. Surprisingly, we demonstrate that although ClockΔ19/Δ19 mice develop metabolic dysfunction, they are protected from cardiac hypertrophy, left ventricular remodeling, and diastolic dysfunction, in contrast to wild-type controls, even when challenged with a chronic high-fat diet. These findings shed new light on the circadian regulation of oxidative stress pathways, which can mediate resilience to cardiovascular disease.
Asunto(s)
Proteínas CLOCK/genética , Enfermedades Cardiovasculares/genética , Síndrome Metabólico/genética , Mutación , Obesidad/genética , Animales , Enfermedades Cardiovasculares/etiología , Enfermedades Cardiovasculares/metabolismo , Catalasa/metabolismo , Glutatión Peroxidasa/metabolismo , Masculino , Síndrome Metabólico/complicaciones , Síndrome Metabólico/metabolismo , Ratones , Ratones Endogámicos C57BL , Miocardio/metabolismo , Obesidad/complicaciones , Obesidad/metabolismo , Estrés Oxidativo , PPAR gamma/metabolismo , Sirtuinas/metabolismoRESUMEN
BACKGROUND: Radiotherapy is widely used and effective for treating brain tumours, but inevitably impairs cognition as it arrests cellular processes important for learning and memory. This is particularly evident in the aged brain with limited regenerative capacity, where radiation produces irreparable neuronal damage and activation of neighbouring microglia. The latter is responsible for increased neuronal death and contributes to cognitive decline after treatment. To date, there are few effective means to prevent cognitive deficits after radiotherapy. METHODS: Here we implanted hematopoietic stem cells (HSCs) from young or old (2- or 18-month-old, respectively) donor mice expressing green fluorescent protein (GFP) into old recipients and assessed cognitive abilities 3 months post-reconstitution. RESULTS: Regardless of donor age, GFP+ cells homed to the brain of old recipients and expressed the macrophage/microglial marker, Iba1. However, only young cells attenuated deficits in novel object recognition and spatial memory and learning in old mice post-irradiation. Mechanistically, old recipients that received young HSCs, but not old, displayed significantly greater dendritic spine density and long-term potentiation (LTP) in CA1 neurons of the hippocampus. Lastly, we found that GFP+/Iba1+ cells from young and old donors were differentially polarized to an anti- and pro-inflammatory phenotype and produced neuroprotective factors and reactive nitrogen species in vivo, respectively. CONCLUSION: Our results suggest aged peripherally derived microglia-like cells may exacerbate cognitive impairments after radiotherapy, whereas young microglia-like cells are polarized to a reparative phenotype in the irradiated brain, particularly in neural circuits associated with rewards, learning, and memory. These findings present a proof-of-principle for effectively reinstating central cognitive function of irradiated brains with peripheral stem cells from young donor bone marrow.
Asunto(s)
Disfunción Cognitiva/terapia , Trasplante de Células Madre Hematopoyéticas , Aprendizaje por Laberinto/fisiología , Radioterapia/efectos adversos , Recuperación de la Función/fisiología , Animales , Conducta Animal/fisiología , Disfunción Cognitiva/etiología , Espinas Dendríticas/fisiología , Hipocampo/fisiología , Humanos , Potenciación a Largo Plazo/fisiología , Memoria/fisiología , Ratones , Neuronas/fisiología , Ataxias Espinocerebelosas/genética , Resultado del TratamientoRESUMEN
BACKGROUND: Cardiac repair depends on angiogenesis and cell proliferation. Previously we identified Canopy 2 (CNPY2) as a secreted angiogenic growth factor which promotes neovascularization. We investigated the role of CNPY2 in cardiac repair following myocardial infarction (MI) and the possible mediators involved using Cnpy2 knockout (KO) mice and human cardiac tissue. METHODS AND RESULTS: Cardiac tissue from patients with end-stage heart failure had significantly lower endogenous CNPY2 expression compared to samples from control patients. CNPY2 expression in mouse hearts significantly decreased following MI. Significantly less leukocyte and endothelial cell proliferation was found in Cnpy2 KO than wild-type (WT) mice post MI which contributed to impaired angiogenesis, tissue repair, and decreased cardiac function (fractional shortening: WT: 21.1⯱â¯2.1% vs. KO: 16.4⯱â¯1.6%, pâ¯<â¯.01 at day 28 post MI). RT-qPCR revealed significantly increased p16INK4a expression in Cnpy2 KO mouse hearts (WT: 1.0⯱â¯0.04 vs. KO: 2.33⯱â¯0.11 [relative expression of p16 INK4a], pâ¯<â¯.01) which was confirmed by immunostaining (WT: 8.47⯱â¯1.22 vs. KO: 12.9⯱â¯1.22 [% total cells], pâ¯<â¯.05) for the p16INK4a protein. Expression of cell cycle-related proteins, cyclin D1, cyclin-dependent kinases 4 and 6, and phosphorylated retinoblastoma protein (pRb) was significantly decreased in Cnpy2 KO mouse hearts. The up-regulation of the p16INK4a/cyclin D1/Rb pathway by knockout of Cnpy2 was accompanied by attenuation of PDK1/Akt phosphorylation. MI exacerbated the detrimental effects of p16INK4a on tissue repair in Cnpy2 KO mice. Overexpression of CNPY2 in the cardiac tissue of transgenic mice reversed the inhibition of cell proliferation through suppression of the p16INK4a pathway. CONCLUSIONS: Cardiac injury and progressive heart failure were associated with decreased CNPY2 levels in both humans and mice. Knockout of Cnpy2 resulted in up-regulation of p16INK4a which impaired cardiac function and tissue repair. These data suggest that CNPY2 is an important regulator of p16INK4a and promotes cell proliferation and tissue repair through inhibition of the p16INK4a pathway. CNPY2 treatment may offer a new approach to restore cardiac function after an MI.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Corazón/fisiología , Miocardio/metabolismo , Transducción de Señal/genética , Animales , Proliferación Celular/genética , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos/genética , Fosforilación/genética , Regulación hacia Arriba/genéticaRESUMEN
Bicuspid aortic valve (BAV) disease is a congenital abnormality that is associated with ascending aortic aneurysm yet many of the molecular mechanisms remain unknown. To identify novel molecular mechanisms of aneurysm formation we completed microarray analysis of the proximal (severely dilated) and distal (less dilated) regions of the ascending aorta from five patients with BAV. We identified 180 differentially expressed genes, 40 of which were validated by RT-qPCR. Most genes had roles in inflammation and endothelial cell function including cytokines and growth factors, cell surface receptors and the Activator Protein 1 (AP-1) transcription factor family (FOS, FOSB and JUN) which was chosen for further study. AP-1 was differentially expressed within paired BAV aneurysmal samples (nâ¯=â¯8) but not Marfan patients (nâ¯=â¯5). FOS protein was significantly enriched in BAV aortas compared to normal aortas but unexpectedly, ERK1/2 activity, an upstream regulator of FOS was reduced. ERK1/2 activity was restored when BAV smooth muscle cells were cultured in vitro. An mRNA-miRNA network within paired patient samples identified AP-1 as a central hub of miRNA regulation. FOS knockdown in BAV SMCs increased expression of miR-27a, a stretch responsive miRNA. AP-1 and miR-27a were also dysregulated in a mouse model of aortic constriction. In summary, this study identified a central role for AP-1 signaling in BAV aortic dilatation by using paired mRNA-miRNA patient sample. Upstream analysis of AP-1 regulation showed that the ERK1/2 signaling pathway is dysregulated and thus represents a novel chain of mediators of aortic dilatation in BAV which should be considered in future studies.
Asunto(s)
Aneurisma de la Aorta/patología , Enfermedades de la Aorta/patología , Válvula Aórtica/anomalías , Biomarcadores/metabolismo , Dilatación Patológica/patología , Enfermedades de las Válvulas Cardíacas/patología , Animales , Aneurisma de la Aorta/genética , Aneurisma de la Aorta/metabolismo , Enfermedades de la Aorta/genética , Enfermedades de la Aorta/metabolismo , Válvula Aórtica/fisiopatología , Enfermedad de la Válvula Aórtica Bicúspide , Dilatación Patológica/genética , Dilatación Patológica/metabolismo , Progresión de la Enfermedad , Femenino , Perfilación de la Expresión Génica , Enfermedades de las Válvulas Cardíacas/genética , Enfermedades de las Válvulas Cardíacas/metabolismo , Enfermedades de las Válvulas Cardíacas/fisiopatología , Humanos , Ratones , Ratones Endogámicos C57BL , MicroARNs/genética , Transducción de SeñalRESUMEN
Cell therapy has received significant attention as a therapeutic approach to restore cardiac function after myocardial infarction. Accumulating evidence supports that beneficial effects observed with cell therapy are due to paracrine secretion of multiple factors from transplanted cells, which alter the tissue microenvironment and orchestrate cardiac repair processes. Of these paracrine factors, extracellular vesicles (EVs) have emerged as a key effector of cell therapy. EVs regulate cellular function through the transfer of cargo, such as microRNAs and proteins, which act on multiple biological pathways within recipient cells. These discoveries have led to the development of cell-free therapies using EVs to improve cardiac repair after a myocardial infarction. Here, we present an overview of the current use of EVs to enhance cardiac repair after myocardial infarction. We also discuss the emerging use of EVs for rejuvenation-based therapies. Finally, future directions for the use of EVs as therapeutic agents for cardiac regenerative medicine are also discussed.
Asunto(s)
Vesículas Extracelulares/metabolismo , Corazón/fisiología , Miocardio/metabolismo , Regeneración , Animales , Vesículas Extracelulares/trasplante , HumanosRESUMEN
The circadian mechanism underlies daily rhythms in cardiovascular physiology and rhythm disruption is a major risk factor for heart disease and worse outcomes. However, the role of circadian rhythms is generally clinically unappreciated. Clock is a core component of the circadian mechanism and here we examine the role of Clock as a vital determinant of cardiac physiology and pathophysiology in aging. ClockΔ19/Δ19 mice develop age-dependent increases in heart weight, hypertrophy, dilation, impaired contractility, and reduced myogenic responsiveness. Young ClockΔ19/Δ19 hearts express dysregulated mRNAs and miRNAs in the PTEN-AKT signal pathways important for cardiac hypertrophy. We found a rhythm in the Pten gene and PTEN protein in WT hearts; rhythmic oscillations are lost in ClockΔ19/Δ19 hearts. Changes in PTEN are associated with reduced AKT activation and changes in downstream mediators GSK-3ß, PRAS40, and S6K1. Cardiomyocyte cultures confirm that Clock regulates the AKT signalling pathways crucial for cardiac hypertrophy. In old ClockΔ19/Δ19 mice cardiac AKT, GSK3ß, S6K1 phosphorylation are increased, consistent with the development of age-dependent cardiac hypertrophy. Lastly, we show that pharmacological modulation of the circadian mechanism with the REV-ERB agonist SR9009 reduces AKT activation and heart weight in old WT mice. Furthermore, SR9009 attenuates cardiac hypertrophy in mice subjected to transverse aortic constriction (TAC), supporting that the circadian mechanism plays an important role in regulating cardiac growth. These findings demonstrate a crucial role for Clock in growth and renewal; disrupting Clock leads to age-dependent cardiomyopathy. Pharmacological targeting of the circadian mechanism provides a new opportunity for treating heart disease.
Asunto(s)
Envejecimiento , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Enfermedades Cardiovasculares/etiología , Enfermedades Cardiovasculares/metabolismo , Relojes Circadianos , Animales , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/fisiopatología , Modelos Animales de Enfermedad , Ecocardiografía , Regulación de la Expresión Génica , Hemodinámica , Ratones , Ratones Noqueados , Miocitos Cardíacos/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Interferente Pequeño/genética , Transducción de SeñalRESUMEN
Diurnal or circadian rhythms are fundamentally important for healthy cardiovascular physiology and play a role in timing of onset and tolerance to myocardial infarction (MI) in patients. Whether time of day of MI triggers different molecular and cellular responses that can influence myocardial remodeling is not known. This study was designed to test whether time of day of MI triggers different gene expression, humoral, and innate inflammatory responses that contribute to cardiac repair after MI. Mice were infarcted by left anterior descending coronary artery ligation (MI model) within a 2-h time window either shortly after lights on or lights off, and the early remodeling responses at 8 h postinfarction were examined. We found that sleep-MI preferentially triggers early expression of genes associated with inflammatory responses, whereas wake-MI triggers more genes associated with metabolic pathways and transcription/translation, by microarray analyses. Homozygous clock mutant mice exhibit altered diurnal gene expression profiles, consistent with their cycling before onset of MI. In the first 8 h, crucial for innate immune responses to MI, there are also significant differences in sleep-MI and wake-MI serum cytokine responses and in neutrophil infiltration to infarcted myocardium. By 1-wk post-MI, there are differences in survivorship between the sleep and wake MI mice that could be explained by the different molecular and cellular responses. Our whole body physiology, tissues, and cells exhibit endogenous daily rhythms, and understanding their role in triggering effective responses after MI could lead to new strategies to benefit patients with cardiovascular disease.
Asunto(s)
Proteínas CLOCK/inmunología , Ritmo Circadiano/inmunología , Citocinas/inmunología , Infarto del Miocardio/inmunología , Miocarditis/inmunología , Sueño/inmunología , Animales , Femenino , Regulación de la Expresión Génica/inmunología , Inmunidad Innata/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Infarto del Miocardio/patología , Miocarditis/patología , Tasa de Supervivencia , VigiliaRESUMEN
RATIONALE: Patients in intensive care units are disconnected from their natural environment. Synchrony between environmental diurnal rhythms and intracellular circadian rhythms is essential for normal organ biology; disruption causes pathology. Whether disturbing rhythms after myocardial infarction (MI) exacerbates long-term myocardial dysfunction is not known. OBJECTIVE: Short-term diurnal rhythm disruption immediately after MI impairs remodeling and adversely affects long-term cardiac structure and function in a murine model. METHODS AND RESULTS: Mice were infarcted by left anterior descending coronary artery ligation (MI model) within a 3-hour time window, randomized to either a normal diurnal or disrupted environment for 5 days, and then maintained under normal diurnal conditions. Initial infarct size was identical. Short-term diurnal disruption adversely affected body metabolism and altered early innate immune responses. In the first 5 days, crucial for scar formation, there were significant differences in cardiac myeloperoxidase, cytokines, neutrophil, and macrophage infiltration. Homozygous clock mutant mice exhibited altered infiltration after MI, consistent with circadian mechanisms underlying innate immune responses crucial for scar formation. In the proliferative phase, 1 week after MI, this led to significantly less blood vessel formation in the infarct region of disrupted mice; by day 14, echocardiography showed increased left ventricular dilation and infarct expansion. These differences continued to evolve with worse cardiac structure and function by 8 weeks after MI. CONCLUSIONS: Diurnal rhythm disruption immediately after MI impaired healing and exacerbated maladaptive cardiac remodeling. These preclinical findings suggest that disrupted diurnal rhythms such as found in modern intensive care unit environments may adversely affect long-term patient outcome.
Asunto(s)
Ritmo Circadiano/fisiología , Corazón/fisiopatología , Infarto del Miocardio/fisiopatología , Miocardio/patología , Animales , Vasos Coronarios/fisiopatología , Modelos Animales de Enfermedad , Ligadura/efectos adversos , Masculino , Ratones , Ratones Endogámicos C57BL , Infarto del Miocardio/etiología , Factores de TiempoRESUMEN
Circadian rhythms are essential to cardiovascular health and disease. Temporal coordination of cardiac structure and function has focused primarily at the physiological and gene expression levels, but these analyses are invariably incomplete, not the least because proteins underlie many biological processes. The purpose of this study was to reveal the diurnal cardiac proteome and important contributions to cardiac function. The 24-h day-night murine cardiac proteome was assessed by two-dimensional difference in gel electrophoresis (2D-DIGE) and liquid chromatography-mass spectrometry. Daily variation was considerable, as â¼7.8% (90/1,147) of spots exhibited statistical changes at paired times across the 24-h light- (L) dark (D) cycle. JTK_CYCLE was used to investigate underlying diurnal rhythms in corresponding mRNA. We next revealed that disruption of the L:D cycle altered protein profiles and diurnal variation in cardiac function in Langendorff-perfused hearts, relative to the L:D cycle. To investigate the role of the circadian clock mechanism, we used cardiomyocyte clock mutant (CCM) mice. CCM myofilaments exhibited a loss of time-of-day-dependent maximal calcium-dependent ATP consumption, and altered phosphorylation rhythms. Moreover, the cardiac proteome was significantly altered in CCM hearts, especially enzymes regulating vital metabolic pathways. Lastly, we used a model of pressure overload cardiac hypertrophy to demonstrate the temporal proteome during heart disease. Our studies demonstrate that time of day plays a direct role in cardiac protein abundance and indicate a novel mechanistic contribution of circadian biology to cardiovascular structure and function.
Asunto(s)
Relojes Circadianos/fisiología , Ritmo Circadiano/fisiología , Corazón/fisiología , Miocitos Cardíacos/metabolismo , Proteoma/metabolismo , Animales , Regulación de la Expresión Génica/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Fosforilación/fisiología , ARN Mensajero/metabolismoRESUMEN
In Canada and worldwide, the elderly population (ie, individuals > 65 years of age) is increasing disproportionately relative to the total population. This is expected to have a substantial impact on the health care system, as increased aged is associated with a greater incidence of chronic noncommunicable diseases. Within the elderly population, cardiovascular disease is a leading cause of death, therefore developing therapies that can prevent or slow disease progression in this group is highly desirable. Historically, aging research has focused on the development of anti-aging therapies that are implemented early in life and slow the age-dependent decline in cell and organ function. However, accumulating evidence supports that late-in-life therapies can also benefit the aged cardiovascular system by limiting age-dependent functional decline. Moreover, recent studies have demonstrated that rejuvenation (ie, reverting cellular function to that of a younger phenotype) of the already aged cardiovascular system is possible, opening new avenues to develop therapies for older individuals. In this review, we first provide an overview of the functional changes that occur in the cardiomyocyte with aging and how this contributes to the age-dependent decline in heart function. We then discuss the various anti-aging and rejuvenation strategies that have been pursued to improve the function of the aged cardiomyocyte, with a focus on therapies implemented late in life. These strategies include 1) established systemic approaches (caloric restriction, exercise), 2) pharmacologic approaches (mTOR, AMPK, SIRT1, and autophagy-targeting molecules), and 3) emerging rejuvenation approaches (partial reprogramming, parabiosis/modulation of circulating factors, targeting endogenous stem cell populations, and senotherapeutics). Collectively, these studies demonstrate the exciting potential and limitations of current rejuvenation strategies and highlight future areas of investigation that will contribute to the development of rejuvenation therapies for the aged heart.
Asunto(s)
Envejecimiento , Rejuvenecimiento , Humanos , Envejecimiento/fisiología , Rejuvenecimiento/fisiología , Miocitos Cardíacos , Enfermedades Cardiovasculares/terapia , Enfermedades Cardiovasculares/prevención & control , Corazón/fisiología , AncianoRESUMEN
The transplantation of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) has shown promise in preclinical models of myocardial infarction, but graft myocardium exhibits incomplete host-graft electromechanical integration and a propensity for pro-arrhythmic behavior. Perhaps contributing to this situation, hPSC-CM grafts show low expression of connexin 43 (Cx43), the major gap junction (GJ) protein, in ventricular myocardia. We hypothesized that Cx43 expression and function could be rescued by engineering Cx43 in hPSC-CMs with a series of phosphatase-resistant mutations at three casein kinase 1 phosphorylation sites (Cx43-S3E) that have been previously reported to stabilize Cx43 GJs and reduce arrhythmias in transgenic mice. However, contrary to our predictions, transgenic Cx43-S3E hPSC-CMs exhibited reduced Cx43 expression relative to wild-type cells, both at baseline and following ischemic challenge. Cx43-S3E hPSC-CMs showed correspondingly slower conduction velocities, increased automaticity, and differential expression of other connexin isoforms and various genes involved in cardiac excitation-contraction coupling. Cx43-S3E hPSC-CMs also had phosphorylation marks associated with Cx43 GJ internalization, a finding that may account for their impaired GJ localization. Taken collectively, our data indicate that the Cx43-S3E mutation behaves differently in hPSC-CMs than in adult mouse ventricular myocytes and that multiple biological factors likely need to be addressed synchronously to ensure proper Cx43 expression, localization, and function.
Asunto(s)
Quinasa de la Caseína I , Conexina 43 , Miocitos Cardíacos , Adulto , Animales , Humanos , Ratones , Quinasa de la Caseína I/genética , Conexina 43/genética , Conexinas , Uniones Comunicantes , Ratones Transgénicos , MutaciónRESUMEN
Background: Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) show tremendous promise for cardiac regeneration following myocardial infarction (MI), but their transplantation gives rise to transient ventricular tachycardia (VT) in large-animal MI models, representing a major hurdle to translation. Our group previously reported that these arrhythmias arise from a focal mechanism whereby graft tissue functions as an ectopic pacemaker; therefore, we hypothesized that hPSC-CMs engineered with a dominant negative form of the pacemaker ion channel HCN4 (dnHCN4) would exhibit reduced automaticity and arrhythmogenic risk following transplantation. Methods: We used CRISPR/Cas9-mediated gene-editing to create transgenic dnHCN4 hPSC-CMs, and their electrophysiological behavior was evaluated in vitro by patch-clamp recordings and optical mapping. Next, we transplanted WT and homozygous dnHCN4 hPSC-CMs in a pig MI model and compared post-transplantation outcomes including the incidence of spontaneous arrhythmias and graft structure by immunohistochemistry. Results: In vitro dnHCN4 hPSC-CMs exhibited significantly reduced automaticity and pacemaker funny current (I f ) density relative to wildtype (WT) cardiomyocytes. Following transplantation with either dnHCN4 or WT hPSC-CMs, all recipient hearts showed transmural infarct scar that was partially remuscularized by scattered islands of human myocardium. However, in contrast to our hypothesis, both dnHCN4 and WT hPSC-CM recipients exhibited frequent episodes of ventricular tachycardia (VT). Conclusions: While genetic silencing of the pacemaker ion channel HCN4 suppresses the automaticity of hPSC-CMs in vitro, this intervention is insufficient to reduce VT risk post-transplantation in the pig MI model, implying more complex mechanism(s) are operational in vivo.
RESUMEN
Myocardial fibrosis, resulting from myocardial infarction (MI), significantly alters cardiac electrophysiological properties. As fibrotic scar tissue forms, its resistance to incoming action potentials increases, leading to cardiac arrhythmia, and eventually sudden cardiac death or heart failure. Biomaterials are gaining increasing attention as an approach for addressing post-MI arrhythmias. The current study investigates the hypothesis that a bio-conductive epicardial patch can electrically synchronize isolated cardiomyocytes in vitro and rescue arrhythmic hearts in vivo. A new conceived biocompatible, conductive, and elastic polyurethane composite bio-membrane, referred to as polypyrrole-polycarbonate polyurethane (PPy-PCNU), is developed, in which solid-state conductive PPy nanoparticles are distributed throughout an electrospun aliphatic PCNU nanofiber patch in a controlled manner. Compared to PCNU alone, the resulting biocompatible patch demonstrates up to six times less impedance, with no conductivity loss over time, as well as being able to influence cellular alignment. Furthermore, PPy-PCNU promotes synchronous contraction of isolated neonatal rat cardiomyocytes and alleviates atrial fibrillation in rat hearts upon epicardial implantation. Taken together, epicardially-implanted PPy-PCNU could potentially serve as a novel alternative approach for the treatment of cardiac arrhythmias.
Asunto(s)
Infarto del Miocardio , Polímeros , Ratas , Animales , Poliuretanos , Elastómeros , Pirroles/farmacología , Miocitos Cardíacos , Infarto del Miocardio/terapia , Arritmias Cardíacas , Conductividad EléctricaRESUMEN
Background Heart failure (HF) is a clinical syndrome associated with a progressive decline in myocardial function and low-grade systemic inflammation. Chronic inflammation can have lasting effects on the bone marrow (BM) stem cell pool by impacting cell renewal and lineage differentiation. However, how HF affects BM stem/progenitor cells remains largely unexplored. Methods and Results EGFP+ (Enchanced green fluorescent protein) mice were subjected to coronary artery ligation, and BM was collected 8 weeks after myocardial infarction. Transplantation of EGFP+ BM into wild-type mice revealed reduced reconstitution potential of BM from mice subjected to myocardial infarction versus BM from sham mice. To study the effects HF has on human BM function, 71 patients, HF (n=20) and controls (n=51), who were scheduled for elective cardiac surgery were consented and enrolled in this study. Patients with HF exhibited more circulating blood myeloid cells, and analysis of patient BM revealed significant differences in cell composition and colony formation potential. Human CD34+ cell reconstitution potential was also assessed using the NOD-SCID-IL2rγnull mouse xenotransplant model. NOD-SCID-IL2rγnull mice reconstituted with BM from patients with HF had significantly fewer engrafted human CD34+ cells as well as reduced lymphoid cell production. Analysis of tissue repair responses using permanent left anteriordescending coronary artery ligation demonstrated reduced survival of HF-BM reconstituted mice as well as significant differences in human (donor) and mouse (host) cellular responses after MI. Conclusions HF alters the BM composition, adversely affects cell reconstitution potential, and alters cellular responses to injury. Further studies are needed to determine whether restoring BM function can impact disease progression or improve cellular responses to injury.
Asunto(s)
Insuficiencia Cardíaca , Infarto del Miocardio , Humanos , Animales , Ratones , Médula Ósea , Ratones SCID , Ratones Endogámicos NOD , Insuficiencia Cardíaca/etiología , Infarto del Miocardio/complicaciones , Antígenos CD34 , Células de la Médula Ósea , Células Madre HematopoyéticasRESUMEN
AIMS: Circadian rhythms orchestrate important functions in the cardiovascular system: the contribution of microvascular rhythms to cardiovascular disease progression/severity is unknown. This study hypothesized that (i) myogenic reactivity in skeletal muscle resistance arteries is rhythmic and (ii) disrupting this rhythmicity would alter cardiac injury post-myocardial infarction (MI). METHODS AND RESULTS: Cremaster skeletal muscle resistance arteries were isolated and assessed using standard pressure myography. Circadian rhythmicity was globally disrupted with the ClockΔ19/Δ19 mutation or discretely through smooth muscle cell-specific Bmal1 deletion (Sm-Bmal1 KO). Cardiac structure and function were determined by echocardiographic, hemodynamic and histological assessments. Myogenic reactivity in cremaster muscle resistance arteries is rhythmic. This rhythm is putatively mediated by the circadian modulation of a mechanosensitive signalosome incorporating tumour necrosis factor and casein kinase 1. Following left anterior descending coronary artery ligation, myogenic responsiveness is locked at the circadian maximum, although circadian molecular clock gene expression cycles normally. Disrupting the molecular clock abolishes myogenic rhythmicity: myogenic tone is suspended at the circadian minimum and is no longer augmented by MI. The reduced myogenic tone in ClockΔ19/Δ19 mice and Sm-Bmal1 KO mice associates with reduced total peripheral resistance (TPR), improved cardiac function and reduced infarct expansion post-MI. CONCLUSIONS: Augmented microvascular constriction aggravates cardiac injury post-MI. Following MI, skeletal muscle resistance artery myogenic reactivity increases specifically within the rest phase, when TPR would normally decline. Disrupting the circadian clock interrupts the MI-induced augmentation in myogenic reactivity: therapeutics targeting the molecular clock, therefore, may be useful for improving MI outcomes.