Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
EMBO J ; 32(3): 450-60, 2013 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-23314747

RESUMEN

The TTAGGG motif is common to two seemingly unrelated dimensions of chromatin function-the vertebrate telomere repeat and the promoter regions of many Schizosaccharomyces pombe genes, including all of those encoding canonical histones. The essential S. pombe protein Teb1 contains two Myb-like DNA binding domains related to those found in telomere proteins and binds the human telomere repeat sequence TTAGGG. Here, we analyse Teb1 binding throughout the genome and the consequences of reduced Teb1 function. Chromatin immunoprecipitation (ChIP)-on-chip analysis reveals robust Teb1 binding at many promoters, notably including all of those controlling canonical histone gene expression. A hypomorphic allele, teb1-1, confers reduced binding and reduced levels of histone transcripts. Prompted by previously suggested connections between histone expression and centromere identity, we examined localization of the centromeric histone H3 variant Cnp1 and found reduced centromeric binding along with reduced centromeric silencing. These data identify Teb1 as a master regulator of histone levels and centromere identity.


Asunto(s)
Centrómero/fisiología , Proteínas de Unión al ADN/metabolismo , Regulación Fúngica de la Expresión Génica/fisiología , Histonas/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/fisiología , Factores de Transcripción/metabolismo , Southern Blotting , Western Blotting , Centrómero/metabolismo , Inmunoprecipitación de Cromatina , Proteínas Cromosómicas no Histona/metabolismo , Cartilla de ADN/genética , Electroforesis en Gel de Poliacrilamida , Citometría de Flujo , Técnica del Anticuerpo Fluorescente Indirecta , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica/genética , Análisis por Micromatrices , Mutagénesis , Telómero/metabolismo
2.
BMC Genomics ; 17(1): 739, 2016 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-27640184

RESUMEN

BACKGROUND: Chromosomal translocations are a hallmark of cancer cells and give rise to fusion oncogenes. To gain insight into the mechanisms governing tumorigenesis, adequate model cell lines are required. RESULTS: We employ the versatile CRISPR/Cas system to engineer cell lines in which chromosomal translocations are either generated de novo (CD74-ROS1) or existing translocations are reverted back to the original configuration (BCR-ABL1). To this end, we co-apply two guide RNAs to artificially generate two breakpoints and screen for spontaneous fusion events by PCR. CONCLUSIONS: The approach we use is efficient and delivers clones bearing translocationsin a predictable fashion. Detailed analysis suggests that the clones display no additional undesired alterations, implying that the approach is robust and precise.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Translocación Genética , Línea Celular Tumoral , Transformación Celular Neoplásica , Proteínas de Fusión bcr-abl/genética , Fusión Génica , Reordenamiento Génico , Marcación de Gen , Ingeniería Genética , Humanos , ARN Guía de Kinetoplastida
3.
PLoS Genet ; 5(8): e1000626, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19714215

RESUMEN

The regulation of the G1- to S-phase transition is critical for cell-cycle progression. This transition is driven by a transient transcriptional wave regulated by transcription factor complexes termed MBF/SBF in yeast and E2F-DP in mammals. Here we apply genomic, genetic, and biochemical approaches to show that the Yox1p homeodomain protein of fission yeast plays a critical role in confining MBF-dependent transcription to the G1/S transition of the cell cycle. The yox1 gene is an MBF target, and Yox1p accumulates and preferentially binds to MBF-regulated promoters, via the MBF components Res2p and Nrm1p, when they are transcriptionally repressed during the cell cycle. Deletion of yox1 results in constitutively high transcription of MBF target genes and loss of their cell cycle-regulated expression, similar to deletion of nrm1. Genome-wide location analyses of Yox1p and the MBF component Cdc10p reveal dozens of genes whose promoters are bound by both factors, including their own genes and histone genes. In addition, Cdc10p shows promiscuous binding to other sites, most notably close to replication origins. This study establishes Yox1p as a new regulatory MBF component in fission yeast, which is transcriptionally induced by MBF and in turn inhibits MBF-dependent transcription. Yox1p may function together with Nrm1p to confine MBF-dependent transcription to the G1/S transition of the cell cycle via negative feedback. Compared to the orthologous budding yeast Yox1p, which indirectly functions in a negative feedback loop for cell-cycle transcription, similarities but also notable differences in the wiring of the regulatory circuits are evident.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Ciclo Celular , Retroalimentación Fisiológica , Proteínas de Homeodominio/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/citología , Schizosaccharomyces/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Ciclo Celular/genética , Regulación hacia Abajo , Regulación Fúngica de la Expresión Génica , Proteínas de Homeodominio/genética , Regiones Promotoras Genéticas , Unión Proteica , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Factores de Transcripción/genética , Transcripción Genética
4.
Biochem Soc Symp ; (73): 97-108, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16626291

RESUMEN

At the replication fork, nucleosomes, transcription factors and RNA polymerases are stripped off the DNA, the DNA double strands are unzipped and DNA methylation marks may be erased. Therefore DNA replication is both a 'curse' and 'bliss' for the epigenome, as it disrupts its stability by causing chromatin perturbations, yet it offers an opportunity to initiate changes in chromatin architecture and gene expression patterns, especially during development. Thus the DNA replication site is a critical point for regulation. It has become apparent that there is a close functional relationship between those factors that regulate transcriptional competence and the DNA replication programme. In this review we discuss novel insights into how chromatin-remodelling factors at replication sites are involved in both the maintenance and regulation of transcriptional states.


Asunto(s)
Ensamble y Desensamble de Cromatina , Replicación del ADN , Transcripción Genética , Sitios de Unión , Cromatina/genética , Cromatina/metabolismo , Histonas/metabolismo , Modelos Biológicos , Chaperonas Moleculares/metabolismo , Nucleosomas/metabolismo , Origen de Réplica
5.
Genome Biol ; 12(8): R82, 2011 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-21859475

RESUMEN

BACKGROUND: The generation of mature mRNAs involves interconnected processes, including transcription by RNA polymerase II (Pol II), modification of histones, and processing of pre-mRNAs through capping, intron splicing, and polyadenylation. These processes are thought to be integrated, both spatially and temporally, but it is unclear how these connections manifest at a global level with respect to chromatin patterns and transcription kinetics. We sought to clarify the relationships between chromatin, transcription and splicing using multiple genome-wide approaches in fission yeast. RESULTS: To investigate these functional interdependencies, we determined Pol II occupancy across all genes using high-density tiling arrays. We also performed ChIP-chip on the same array platform to globally map histone H3 and its H3K36me3 modification, complemented by formaldehyde-assisted isolation of regulatory elements (FAIRE). Surprisingly, Pol II occupancy was higher in introns than in exons, and this difference was inversely correlated with gene expression levels at a global level. Moreover, introns showed distinct distributions of histone H3, H3K36me3 and FAIRE signals, similar to those at promoters and terminators. These distinct transcription and chromatin patterns of intronic regions were most pronounced in poorly expressed genes. CONCLUSIONS: Our findings suggest that Pol II accumulates at the 3' ends of introns, leading to substantial transcriptional delays in weakly transcribed genes. We propose that the global relationship between transcription, chromatin remodeling, and splicing may reflect differences in local nuclear environments, with highly expressed genes being associated with abundant processing factors that promote effective intron splicing and transcriptional elongation.


Asunto(s)
ADN de Hongos/genética , Exones , Intrones , Nucleosomas/genética , ARN Polimerasa II/genética , Schizosaccharomyces/genética , Cromatina/genética , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina , ADN de Hongos/metabolismo , Histonas/genética , Histonas/metabolismo , Nucleosomas/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Poliadenilación/genética , ARN Polimerasa II/metabolismo , Precursores del ARN/genética , Precursores del ARN/metabolismo , Empalme del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos , Schizosaccharomyces/metabolismo , Transducción de Señal , Transcripción Genética
6.
Mol Cell Biol ; 30(3): 657-74, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19933844

RESUMEN

Ino80 is an ATP-dependent nucleosome-remodeling enzyme involved in transcription, replication, and the DNA damage response. Here, we characterize the fission yeast Ino80 and find that it is essential for cell viability. We show that the Ino80 complex from fission yeast mediates ATP-dependent nucleosome remodeling in vitro. The purification of the Ino80-associated complex identified a highly conserved complex and the presence of a novel zinc finger protein with similarities to the mammalian transcriptional regulator Yin Yang 1 (YY1) and other members of the GLI-Krüppel family of proteins. Deletion of this Iec1 protein or the Ino80 complex subunit arp8, ies6, or ies2 causes defects in DNA damage repair, the response to replication stress, and nucleotide metabolism. We show that Iec1 is important for the correct expression of genes involved in nucleotide metabolism, including the ribonucleotide reductase subunit cdc22 and phosphate- and adenine-responsive genes. We find that Ino80 is recruited to a large number of promoter regions on phosphate starvation, including those of phosphate- and adenine-responsive genes that depend on Iec1 for correct expression. Iec1 is required for the binding of Ino80 to target genes and subsequent histone loss at the promoter and throughout the body of these genes on phosphate starvation. This suggests that the Iec1-Ino80 complex promotes transcription through nucleosome eviction.


Asunto(s)
Nucleosomas/metabolismo , Nucleótidos/metabolismo , Fosfatos/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Factores de Transcripción/metabolismo , Dedos de Zinc , Adenina/metabolismo , Secuencia de Aminoácidos , Proteínas de Ciclo Celular/metabolismo , Daño del ADN , Regulación Fúngica de la Expresión Génica , Análisis por Micromatrices , Datos de Secuencia Molecular , Proteínas de Schizosaccharomyces pombe/genética , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA