Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Environ Manage ; 117: 32-41, 2013 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-23339800

RESUMEN

Simazine is a soil-active herbicide that has been applied worldwide in agricultural soils, being the second most commonly detected herbicide in groundwater and surface waters. Although its use has been restricted in many countries of Europe, it is still applied in many locations around the world in orchards, vineyards and forestry. Therefore, it is important to study its fate and transport in the environment. This paper investigates simazine transport in undisturbed bare soils from a vineyard at the Casablanca valley, Chile. In the study site, shallow groundwater tables (<1.0 m depth) and high simazine levels (>15 µg L(-1)) in the groundwater were observed and thus, there is potential for simazine to be transported further away through the saturated zone. The soils from the study site were characterized and the hydrodynamic transport parameters were determined. Column leaching experiments showed that the two-site chemical non-equilibrium model correctly represented simazine transport. It was found that 36.3% of the adsorption sites achieve instantaneous equilibrium and that the first-order kinetic rate of the non-equilibrium sites was 6.2 × 10(-3) h(-1). Hydrus 2D was used to predict the transport of simazine in the study site under natural field conditions. Simulation results showed that simazine concentrations at depths shallower than 2.1 m are above the maximum contaminant level of 4 µg L(-1) (defined by the U.S. Environmental Protection Agency). The timing of herbicide application was found to be important on simazine leaching and the main processes involved in simazine transport were degradation and adsorption, which accounted for 95.78 and 4.19% of the simulated mass of pesticide, respectively. A qualitative agreement in the timing and magnitude of simazine concentration was obtained between the simulations and the field data. Therefore, the model utilized in this investigation can be used to predict simazine transport and is a valuable tool to assess agricultural practices to minimize environmental impacts of simazine.


Asunto(s)
Contaminantes Ambientales/análisis , Agua Subterránea/química , Herbicidas/análisis , Simazina/análisis , Agricultura , Chile , Monitoreo del Ambiente , Contaminantes Ambientales/química , Herbicidas/química , Hidrodinámica , Simazina/química , Vitis , Movimientos del Agua
2.
J Environ Sci Health B ; 46(1): 62-8, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21191865

RESUMEN

This investigation was performed to determine the effect of physicochemical soil properties on penoxsulam, molinate, bentazon, and MCPA adsorption-desorption processes. Four soils from Melozal (35° 43' S; 71° 41' W), Parral (36° 08' S; 71° 52' W), San Carlos (36° 24' S; 71° 57' W), and Panimavida (35° 44' S; 71° 24' W) were utilized. Herbicide adsorption reached equilibrium after 4 h in all soils. The Freundlich L-type isotherm described the adsorption process, which showed a high affinity between herbicides and sorption sites mainly because of hydrophobic and H-bonds interaction. Penoxsulam showed the highest adsorption coefficients (4.23 ± 0.72 to 10.69 ± 1.58 mL g⁻¹) and were related to soil pH. Molinate showed K(d) values between 1.72 ± 0.01 and 2.3 ± 0.01 mL g⁻¹ and were related to soil pH and organic matter, specifically to the amount of humic substances. Bentazon had a high relationship with pH and humic substances and its K(d) values were the lowest, ranging from 0.11 ± 0.01 to 0.42 ± 0.01 mL g⁻¹. MCPA K(d) ranged from 0.14 ± 0.02 to 2.72 ± 0.01 mL g⁻¹, however its adsorption was related to humic acids and clay content. According to these results, the soil factors that could explain the sorption process of the studied herbicides under paddy rice soil conditions, were principally humic substances and soil pH. Considering the sorption variability observed in this study and the potential risk for groundwater contamination, it is necessary to develop weed rice management strategies that limit use of herbicides that exhibit low soil adsorption in areas with predisposing conditions to soil leaching.


Asunto(s)
Herbicidas/química , Oryza , Contaminantes del Suelo/química , Absorción , Adsorción , Agricultura , Brasil , Sustancias Húmicas/análisis , Concentración de Iones de Hidrógeno , Suelo/química , Contaminantes Químicos del Agua/química
3.
J Environ Sci Health B ; 44(4): 337-43, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19365748

RESUMEN

A four-year field study was conducted to determine the effect of pluviometric conditions on pendimethalin and oxyfluorfen soil dynamics. Adsorption, dissipation and soil movement were studied in a sandy loam soil from 2003 to 2007. Pendimethalin and oxyfluorfen were applied every year on August at 1.33 and 0.75 kg ha(-1), respectively. Herbicide soil concentrations were determined at 0, 10, 20, 40, 90 and 340 days after application (DAA), under two pluviometric regimens, natural rainfall and irrigated (30 mm every 15 days during the first 90 DAA). More than 74% of the herbicide applied was detected at the top 2.5 cm layer for both herbicides, and none was detected at 10 cm or deeper. Pendimethalin soil half-life ranged from 10.5 to 31.5 days, and was affected mainly by the time interval between application and the first rain event. Pendimethalin soil residues at 90 DAA fluctuated from 2.5 to 13.8% of the initial amount applied, and it decreased to 2.4 and 8.6% at 340 DAA. Oxyfluorfen was more persistent than pendimethalin as indicated by its soil half-life which ranged from 34.3 to 52.3 days, affected primarily by the rain amount at the first rainfall after application. Oxyfluorfen soil residues at 90 DAA ranged from 16.7 to 34.8% and it decreased to 3.3 and 17.9% at 340 DAA. Based on half-life values, herbicide soil residues after one year, and soil depth reached by the herbicides, we conclude that both herbicides should be considered as low risk to contaminate groundwater. However, herbicide concentration at the top 2.5 cm layer should be considered in cases where runoff or soil erosion could occur, because of the potential for surface water contamination.


Asunto(s)
Compuestos de Anilina/química , Éteres Difenilos Halogenados/química , Herbicidas/química , Contaminantes del Suelo/química , Agua/química , Lluvia , Factores de Tiempo , Movimientos del Agua
4.
Pest Manag Sci ; 64(5): 579-83, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18200616

RESUMEN

BACKGROUND: Flumioxazin is a soil-applied herbicide recommended for broadleaf weed control in soybeans and peanuts, and was recently introduced for vineyard weed management. Considering the limited information available in relation to flumioxazin field soil behaviour, the main objectives of this study were to determine the persistence, adsorption and movement of flumioxazin in soil in four Chilean vineyard production areas. RESULTS: DT(50) values ranged from 10.6 +/- 1.0 to 32.1 +/- 3.1 days between localities, being correlated with rain events, time between herbicide application and first heavy rain event, and soil pH. Flumioxazin soil residue found at 90 days after application (DAA) varied from 9.6 to 24.9% of the initial amount applied, and depended on the total rainfall amount that occurred during the first 90 DAA. Herbicide leaching below 15 cm was approximately 45% of the flumioxazin detected at 90 DAA in the whole soil profile. Flumioxazin maximum leaching soil depth was 45 cm at all locations. K(d) values varied from 2.54 to 6.51 mg L(-1), depending on localities and soil profile depth, and correlated positively with organic carbon and clay content. CONCLUSIONS: These results indicate that flumioxazin is a herbicide with low environmental risk owing to its short DT(50), reduced soil residues 3 months after application and low effective dose.


Asunto(s)
Benzoxazinas/análisis , Residuos de Plaguicidas/análisis , Ftalimidas/análisis , Suelo/análisis , Adsorción , Chile
5.
Food Chem ; 268: 264-270, 2018 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-30064756

RESUMEN

The aim of this study was to determine the insecticide residue processing factor (PF) from plums to prunes and the effect of the industrial processing of prunes residue concentrations. Our results show an increase of insecticide concentrations during plum dehydration that is explained by fruit water loss; however, the normalized insecticide residue concentration, based on plum dry weights to compensate dehydration, was reduced. The water washing and tenderizing of prunes produced insecticide residue reductions of 22.9 ±â€¯4.5% and 21.9 ±â€¯4.2%, respectively. PF were: 1.157, 1.872, 1.316, 0.192, 2.198, 0.775 and 0.156 for buprofezin, l-cyhalothrin, spirodiclofen, indoxacarb, acetamiprid, imidacloprid and emamectin benzoate, respectively, being directly related to water solubility, aqueous hydrolysis and degradation point and inversely related to molecular mass and melting point. In plums for the dehydrated agroindustry the final product is prunes, therefore, it is crucial to consider the PF to determine the specific preharvest interval for this important agroindustry.


Asunto(s)
Cromatografía de Gases y Espectrometría de Masas , Residuos de Plaguicidas/análisis , Prunus domestica/química , Frutas/química , Frutas/metabolismo , Ivermectina/análogos & derivados , Ivermectina/análisis , Ivermectina/química , Ivermectina/aislamiento & purificación , Neonicotinoides/análisis , Neonicotinoides/química , Neonicotinoides/aislamiento & purificación , Nitrilos/análisis , Nitrilos/química , Nitrilos/aislamiento & purificación , Nitrocompuestos/análisis , Nitrocompuestos/química , Nitrocompuestos/aislamiento & purificación , Oxazinas/análisis , Oxazinas/química , Oxazinas/aislamiento & purificación , Oxidación-Reducción , Residuos de Plaguicidas/química , Residuos de Plaguicidas/aislamiento & purificación , Prunus domestica/metabolismo , Piretrinas/análisis , Piretrinas/química , Piretrinas/aislamiento & purificación , Extracción en Fase Sólida
6.
J Contam Hydrol ; 94(3-4): 166-77, 2007 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-17604874

RESUMEN

The potential contamination of groundwater by herbicides is often controlled by processes in the vadose zone, through which herbicides travel before entering groundwater. In the vadose zone, both physical and chemical processes affect the fate and transport of herbicides, therefore it is important to represent these processes by mathematical models to predict contaminant movement. To simulate the movement of simazine, a herbicide commonly used in Chilean vineyards, batch and miscible displacement column experiments were performed on a disturbed sandy soil to quantify the primary parameters and processes of simazine transport. Chloride (Cl(-)) was used as a non-reactive tracer, and simazine as the reactive tracer. The Hydrus-1D model was used to estimate the parameters by inversion from the breakthrough curves of the columns and to evaluate the potential groundwater contamination in a sandy soil from the Casablanca Valley, Chile. The two-site, chemical non-equilibrium model was observed to best represent the experimental results of the miscible displacement experiments in laboratory soil columns. Predictions of transport under hypothetical field conditions using the same soil from the column experiments were made for 40 years by applying herbicide during the first 20 years, and then halting the application and considering different rates of groundwater recharge. For recharge rates smaller than 84 mm year(-1), the predicted concentration of simazine at a depth of 1 m is below the U.S. EPA's maximum contaminant levels (4 microg L(-1)). After eight years of application at a groundwater recharge rate of 180 mm year(-1) (approximately 50% of the annual rainfall), simazine was found to reach the groundwater (located at 1 m depth) at a higher concentration (more than 40 microg L(-1)) than the existing guidelines in the USA and Europe.


Asunto(s)
Herbicidas/análisis , Modelos Teóricos , Simazina/análisis , Contaminantes del Suelo/análisis , Contaminantes Químicos del Agua/análisis , Adsorción , Predicción , Movimientos del Agua
7.
Food Chem ; 221: 548-554, 2017 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-27979240

RESUMEN

The aim of this study was to evaluate the effect of pesticide formulations and fruit growth stages on the Pre-harvest Interval Period (PHI). Results showed that pesticide formulations did not affect the initial deposit and dissipation rate. However, the fruit growth stage at the application time showed a significant effect on the above-mentioned parameters. Fruit diameter increases in one millimeter pesticide dissipation rates were reduced in -0.033mgkg-1day-1 (R2=0.87; p<0.001) for grapes and -0.014mgkg-1day-1 (R2=0.85; p<0.001) for apples. The relation between solar radiation, air humidity and temperature, and pesticide dissipation rates were dependent on fruit type. PHI could change according to the application time, because of the initial amount of pesticide deposit in the fruits and change in the dissipation rates. Because Maximum Residue Level are becoming more restrictive, it is more important to consider the fruit growth stage effects on pesticide when performing dissipation studies to define PHI.


Asunto(s)
Contaminación de Alimentos/análisis , Malus/efectos de los fármacos , Malus/crecimiento & desarrollo , Plaguicidas/análisis , Vitis/efectos de los fármacos , Vitis/crecimiento & desarrollo , Composición de Medicamentos , Frutas/efectos de los fármacos , Frutas/crecimiento & desarrollo , Residuos de Plaguicidas/análisis , Plaguicidas/farmacología
8.
Pest Manag Sci ; 61(11): 1083-8, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15977310

RESUMEN

Field dissipation, soil movement and laboratory leaching studies were performed to elucidate the effect of two rainfall amounts in the behaviour and environmental fate of simazine under climatic conditions at Casablanca Valley, Chile. Dissipation and soil movement were studied in a field vineyard with a sandy loam soil (Inceptisol; 74.08% sand; 14.87% silt and 11.04% clay). Simazine was applied to bare soil at 2.0 kg AI ha(-1), and its concentration was measured using immunoassay (ELISA) at 0, 10, 20, 40 and 90 days after application under two rainfall amounts, natural field conditions (39 mm) and modified conditions (39 + 180 mm). Simazine leaching was studied using soil core PVC lysimeters (0.9 m height; 0.22 m diameter). Field dissipation data were adjusted with a bi-exponential model. Half-life (DT(50)) values varied between 31.3 (+/-2.5) and 19.0 (+/-4.2) days under natural and modified conditions, respectively. Simazine K(d) varied from 0.42 to 2.15 (K(oc) 32.6-216.2) in the soil profile. Simazine was detected at a 90-cm soil depth in concentrations of 0.0085 (+/-0.0043) mg kg(-1) and 0.0321 (+/-0.001) mg kg(-1) under field and modified conditions, respectively. The maximum simazine leachate concentrations were 0.013 (+/-0.00084) mg litre(-1) (0.012% of total applied simazine) and 0.0084 (+/-0.00082) mg litre(-1) (0.11% of total applied simazine) for field and modified conditions respectively. These data indicate that water quantity has a significant effect on the DT(50) and the amount of simazine that moved through the soil profile, but not on the soil depth reached by this herbicide.


Asunto(s)
Agricultura , Herbicidas/análisis , Herbicidas/química , Simazina/análisis , Simazina/química , Suelo/análisis , Vitis , Chile , Contaminación Ambiental/análisis , Ensayo de Inmunoadsorción Enzimática , Semivida , Lluvia , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA