Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Nature ; 573(7772): 135-138, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31462774

RESUMEN

An animal's stress response requires different adaptive strategies depending on the nature and duration of the stressor. Whereas acute stressors, such as predation, induce a rapid and energy-demanding fight-or-flight response, long-term environmental stressors induce the gradual and long-lasting activation of highly conserved cytoprotective processes1-3. In animals across the evolutionary spectrum, continued activation of the fight-or-flight response weakens the animal's resistance to environmental challenges4,5. However, the molecular and cellular mechanisms that regulate the trade-off between the flight response and long-term stressors are poorly understood. Here we show that repeated induction of the flight response in Caenorhabditis elegans shortens lifespan and inhibits conserved cytoprotective mechanisms. The flight response activates neurons that release tyramine, an invertebrate analogue of adrenaline and noradrenaline. Tyramine stimulates the insulin-IGF-1 signalling (IIS) pathway and precludes the induction of stress response genes by activating an adrenergic-like receptor in the intestine. By contrast, long-term environmental stressors, such as heat or oxidative stress, reduce tyramine release and thereby allow the induction of cytoprotective genes. These findings demonstrate that a neural stress hormone supplies a state-dependent neural switch between acute flight and long-term environmental stress responses and provides mechanistic insights into how the flight response impairs cellular defence systems and accelerates ageing.


Asunto(s)
Caenorhabditis elegans/citología , Caenorhabditis elegans/fisiología , Citoprotección , Insulina/metabolismo , Tiramina/metabolismo , Transporte Activo de Núcleo Celular , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Núcleo Celular/metabolismo , Factores de Transcripción Forkhead/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Mucosa Intestinal/metabolismo , Longevidad , Neuronas/metabolismo , Receptores Adrenérgicos/metabolismo , Receptores de Catecolaminas/metabolismo , Transducción de Señal , Estrés Psicológico
2.
PLoS Genet ; 18(3): e1010091, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35239681

RESUMEN

Co-localization and co-transmission of neurotransmitters and neuropeptides is a core property of neural signaling across species. While co-transmission can increase the flexibility of cellular communication, understanding the functional impact on neural dynamics and behavior remains a major challenge. Here we examine the role of neuropeptide/monoamine co-transmission in the orchestration of the C. elegans escape response. The tyraminergic RIM neurons, which coordinate distinct motor programs of the escape response, also co-express the neuropeptide encoding gene flp-18. We find that in response to a mechanical stimulus, flp-18 mutants have defects in locomotory arousal and head bending that facilitate the omega turn. We show that the induction of the escape response leads to the release of FLP-18 neuropeptides. FLP-18 modulates the escape response through the activation of the G-protein coupled receptor NPR-5. FLP-18 increases intracellular calcium levels in neck and body wall muscles to promote body bending. Our results show that FLP-18 and tyramine act in different tissues in both a complementary and antagonistic manner to control distinct motor programs during different phases of the C. elegans flight response. Our study reveals basic principles by which co-transmission of monoamines and neuropeptides orchestrate in arousal and behavior in response to stress.


Asunto(s)
Proteínas de Caenorhabditis elegans , Neuropéptidos , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Locomoción/fisiología , Neuropéptidos/genética , Neurotransmisores
3.
PLoS Genet ; 18(11): e1010346, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36346800

RESUMEN

The nematode Caenorhabditis elegans requires exogenous cholesterol to survive and its depletion leads to early developmental arrest. Thus, tight regulation of cholesterol storage and distribution within the organism is critical. Previously, we demonstrated that the endocannabinoid (eCB) 2-arachidonoylglycerol (2-AG) plays a key role in C. elegans since it modulates sterol mobilization. However, the mechanism remains unknown. Here we show that mutations in the ocr-2 and osm-9 genes, coding for transient receptors potential V (TRPV) ion channels, dramatically reduce the effect of 2-AG in cholesterol mobilization. Through genetic analysis in combination with the rescue of larval arrest induced by sterol starvation, we found that the insulin/IGF-1signaling (IIS) pathway and UNC-31/CAPS, a calcium-activated regulator of neural dense-core vesicles release, are essential for 2-AG-mediated stimulation of cholesterol mobilization. These findings indicate that 2-AG-dependent cholesterol trafficking requires the release of insulin peptides and signaling through the DAF-2 insulin receptor. These results suggest that 2-AG acts as an endogenous modulator of TRPV signal transduction to control intracellular sterol trafficking through modulation of the IGF-1 signaling pathway.


Asunto(s)
Caenorhabditis elegans , Cannabinoides , Animales , Caenorhabditis elegans/genética , Colesterol/genética , Esteroles , Insulina
4.
PLoS Biol ; 19(7): e3001334, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34232959

RESUMEN

During development, signal-regulated transcription factors (TFs) act as basal repressors and upon signalling through morphogens or cell-to-cell signalling shift to activators, mediating precise and transient responses. Conversely, at the final steps of neuron specification, terminal selector TFs directly initiate and maintain neuron-type specific gene expression through enduring functions as activators. C. elegans contains 3 types of serotonin synthesising neurons that share the expression of the serotonin biosynthesis pathway genes but not of other effector genes. Here, we find an unconventional role for LAG-1, the signal-regulated TF mediator of the Notch pathway, as terminal selector for the ADF serotonergic chemosensory neuron, but not for other serotonergic neuron types. Regulatory regions of ADF effector genes contain functional LAG-1 binding sites that mediate activation but not basal repression. lag-1 mutants show broad defects in ADF effector genes activation, and LAG-1 is required to maintain ADF cell fate and functions throughout life. Unexpectedly, contrary to reported basal repression state for LAG-1 prior to Notch receptor activation, gene expression activation in the ADF neuron by LAG-1 does not require Notch signalling, demonstrating a default activator state for LAG-1 independent of Notch. We hypothesise that the enduring activity of terminal selectors on target genes required uncoupling LAG-1 activating role from receiving the transient Notch signalling.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/metabolismo , Diferenciación Celular/fisiología , Proteínas de Unión al ADN/fisiología , Neuronas Serotoninérgicas/metabolismo , Factores de Transcripción/metabolismo , Animales , Sitios de Unión , Caenorhabditis elegans/citología , Linaje de la Célula , Receptores Notch/fisiología , Neuronas Serotoninérgicas/citología , Serotonina/metabolismo
5.
Cell ; 138(2): 314-27, 2009 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-19632181

RESUMEN

Differences in expression, protein interactions, and DNA binding of paralogous transcription factors ("TF parameters") are thought to be important determinants of regulatory and biological specificity. However, both the extent of TF divergence and the relative contribution of individual TF parameters remain undetermined. We comprehensively identify dimerization partners, spatiotemporal expression patterns, and DNA-binding specificities for the C. elegans bHLH family of TFs, and model these data into an integrated network. This network displays both specificity and promiscuity, as some bHLH proteins, DNA sequences, and tissues are highly connected, whereas others are not. By comparing all bHLH TFs, we find extensive divergence and that all three parameters contribute equally to bHLH divergence. Our approach provides a framework for examining divergence for other protein families in C. elegans and in other complex multicellular organisms, including humans. Cross-species comparisons of integrated networks may provide further insights into molecular features underlying protein family evolution. For a video summary of this article, see the PaperFlick file available with the online Supplemental Data.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Animales , Animales Modificados Genéticamente , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , ADN/metabolismo , Redes Reguladoras de Genes , Masculino , Datos de Secuencia Molecular , Regiones Promotoras Genéticas , Multimerización de Proteína
6.
PLoS Genet ; 15(1): e1007863, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30640919

RESUMEN

Many neurons are unable to regenerate after damage. The ability to regenerate after an insult depends on life stage, neuronal subtype, intrinsic and extrinsic factors. C. elegans is a powerful model to test the genetic and environmental factors that affect axonal regeneration after damage, since its axons can regenerate after neuronal insult. Here we demonstrate that diapause promotes the complete morphological regeneration of truncated touch receptor neuron (TRN) axons expressing a neurotoxic MEC-4(d) DEG/ENaC channel. Truncated axons of different lengths were repaired during diapause and we observed potent axonal regrowth from somas alone. Complete morphological regeneration depends on DLK-1 but neuronal sprouting and outgrowth is DLK-1 independent. We show that TRN regeneration is fully functional since animals regain their ability to respond to mechanical stimulation. Thus, diapause induced regeneration provides a simple model of complete axonal regeneration which will greatly facilitate the study of environmental and genetic factors affecting the rate at which neurons die.


Asunto(s)
Axones , Proteínas de Caenorhabditis elegans/genética , Quinasas Quinasa Quinasa PAM/genética , Proteínas de la Membrana/genética , Regeneración Nerviosa/genética , Malformaciones del Sistema Nervioso/genética , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Diapausa/genética , Diapausa/fisiología , Regulación del Desarrollo de la Expresión Génica , Necrosis/genética , Necrosis/patología , Malformaciones del Sistema Nervioso/fisiopatología , Malformaciones del Sistema Nervioso/rehabilitación , Células Receptoras Sensoriales/metabolismo , Tacto/genética
7.
PLoS Biol ; 13(9): e1002238, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26348462

RESUMEN

Behavioral output of neural networks depends on a delicate balance between excitatory and inhibitory synaptic connections. However, it is not known whether network formation and stability is constrained by the sign of synaptic connections between neurons within the network. Here we show that switching the sign of a synapse within a neural circuit can reverse the behavioral output. The inhibitory tyramine-gated chloride channel, LGC-55, induces head relaxation and inhibits forward locomotion during the Caenorhabditis elegans escape response. We switched the ion selectivity of an inhibitory LGC-55 anion channel to an excitatory LGC-55 cation channel. The engineered cation channel is properly trafficked in the native neural circuit and results in behavioral responses that are opposite to those produced by activation of the LGC-55 anion channel. Our findings indicate that switches in ion selectivity of ligand-gated ion channels (LGICs) do not affect network connectivity or stability and may provide an evolutionary and a synthetic mechanism to change behavior.


Asunto(s)
Conducta Animal/fisiología , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Receptores de Amina Biogénica/metabolismo , Potenciales Sinápticos , Tiramina/metabolismo , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Proteínas de Caenorhabditis elegans/genética , Ingeniería Genética , Datos de Secuencia Molecular , Receptores de Amina Biogénica/genética
8.
PLoS Genet ; 10(8): e1004584, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25167143

RESUMEN

An organism's ability to thrive in changing environmental conditions requires the capacity for making flexible behavioral responses. Here we show that, in the nematode Caenorhabditis elegans, foraging responses to changes in food availability require nlp-12, a homolog of the mammalian neuropeptide cholecystokinin (CCK). nlp-12 expression is limited to a single interneuron (DVA) that is postsynaptic to dopaminergic neurons involved in food-sensing, and presynaptic to locomotory control neurons. NLP-12 release from DVA is regulated through the D1-like dopamine receptor DOP-1, and both nlp-12 and dop-1 are required for normal local food searching responses. nlp-12/CCK overexpression recapitulates characteristics of local food searching, and DVA ablation or mutations disrupting muscle acetylcholine receptor function attenuate these effects. Conversely, nlp-12 deletion reverses behavioral and functional changes associated with genetically enhanced muscle acetylcholine receptor activity. Thus, our data suggest that dopamine-mediated sensory information about food availability shapes foraging in a context-dependent manner through peptide modulation of locomotory output.


Asunto(s)
Conducta Animal , Proteínas de Caenorhabditis elegans/genética , Colecistoquinina/metabolismo , Dopamina/metabolismo , Receptores de Dopamina D1/genética , Animales , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/metabolismo , Colecistoquinina/genética , Dopamina/genética , Neuronas Dopaminérgicas , Mutación , Receptores Dopaminérgicos , Receptores de Dopamina D1/metabolismo , Transducción de Señal/genética , Transmisión Sináptica
9.
PLoS Biol ; 11(4): e1001529, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23565061

RESUMEN

Monoamines provide chemical codes of behavioral states. However, the neural mechanisms of monoaminergic orchestration of behavior are poorly understood. Touch elicits an escape response in Caenorhabditis elegans where the animal moves backward and turns to change its direction of locomotion. We show that the tyramine receptor SER-2 acts through a Gαo pathway to inhibit neurotransmitter release from GABAergic motor neurons that synapse onto ventral body wall muscles. Extrasynaptic activation of SER-2 facilitates ventral body wall muscle contraction, contributing to the tight ventral turn that allows the animal to navigate away from a threatening stimulus. Tyramine temporally coordinates the different phases of the escape response through the synaptic activation of the fast-acting ionotropic receptor, LGC-55, and extrasynaptic activation of the slow-acting metabotropic receptor, SER-2. Our studies show, at the level of single cells, how a sensory input recruits the action of a monoamine to change neural circuit properties and orchestrate a compound motor sequence.


Asunto(s)
Caenorhabditis elegans/fisiología , Reacción de Fuga/fisiología , Neurotransmisores/fisiología , Tiramina/fisiología , Aldicarb/farmacología , Animales , Caenorhabditis elegans/citología , Proteínas de Caenorhabditis elegans/metabolismo , Inhibidores de la Colinesterasa/farmacología , Neuronas GABAérgicas/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Neuronas Motoras/metabolismo , Contracción Muscular , Unión Neuromuscular/efectos de los fármacos , Unión Neuromuscular/fisiología , Neurotransmisores/farmacología , Receptores de Amina Biogénica/genética , Receptores de Amina Biogénica/metabolismo , Eliminación de Secuencia , Transmisión Sináptica , Tiramina/farmacología
10.
J Neurosci ; 34(48): 15947-56, 2014 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-25429136

RESUMEN

Regulated calcium signals play conserved instructive roles in neuronal repair, but how localized calcium stores are differentially mobilized, or might be directly manipulated, to stimulate regeneration within native contexts is poorly understood. We find here that localized calcium release from the endoplasmic reticulum via ryanodine receptor (RyR) channels is critical in stimulating initial regeneration following traumatic cellular damage in vivo. Using laser axotomy of single neurons in Caenorhabditis elegans, we find that mutation of unc-68/RyR greatly impedes both outgrowth and guidance of the regenerating neuron. Performing extended in vivo calcium imaging, we measure subcellular calcium signals within the immediate vicinity of the regenerating axon end that are sustained for hours following axotomy and completely eliminated within unc-68/RyR mutants. Finally, using a novel optogenetic approach to periodically photo-stimulate the axotomized neuron, we can enhance its regeneration. The enhanced outgrowth depends on both amplitude and temporal pattern of excitation and can be blocked by disruption of UNC-68/RyR. This demonstrates the exciting potential of emerging optogenetic technology to beneficially manipulate cell physiology in the context of neuronal regeneration and indicates a link to the underlying cellular calcium signal. Taken as a whole, our findings define a specific localized calcium signal mediated by RyR channel activity that stimulates regenerative outgrowth, which may be dynamically manipulated for beneficial neurotherapeutic effects.


Asunto(s)
Calcio/metabolismo , Regeneración Nerviosa/fisiología , Neuronas/fisiología , Optogenética/métodos , Canal Liberador de Calcio Receptor de Rianodina/fisiología , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans , Channelrhodopsins , Mecanotransducción Celular/fisiología , Fracciones Subcelulares/fisiología
11.
Development ; 139(22): 4191-201, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23093425

RESUMEN

The C. elegans left and right AWC olfactory neurons specify asymmetric subtypes, one default AWC(OFF) and one induced AWC(ON), through a stochastic, coordinated cell signaling event. Intercellular communication between AWCs and non-AWC neurons via a NSY-5 gap junction network coordinates AWC asymmetry. However, the nature of intercellular signaling across the network and how individual non-AWC cells in the network influence AWC asymmetry is not known. Here, we demonstrate that intercellular calcium signaling through the NSY-5 gap junction neural network coordinates a precise 1AWC(ON)/1AWC(OFF) decision. We show that NSY-5 gap junctions in C. elegans cells mediate small molecule passage. We expressed vertebrate calcium-buffer proteins in groups of cells in the network to reduce intracellular calcium levels, thereby disrupting intercellular communication. We find that calcium in non-AWC cells of the network promotes the AWC(ON) fate, in contrast to the autonomous role of calcium in AWCs to promote the AWC(OFF) fate. In addition, calcium in specific non-AWCs promotes AWC(ON) side biases through NSY-5 gap junctions. Our results suggest a novel model in which calcium has dual roles within the NSY-5 network: autonomously promoting AWC(OFF) and non-autonomously promoting AWC(ON).


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/citología , Caenorhabditis elegans/metabolismo , Señalización del Calcio , Conexinas/metabolismo , Uniones Comunicantes/metabolismo , Neuronas/citología , Neuronas Receptoras Olfatorias/metabolismo , Animales , Transporte Biológico , Caenorhabditis elegans/genética , Calbindinas , Calcio/metabolismo , Comunicación Celular , Células Cultivadas , Regulación del Desarrollo de la Expresión Génica , Canales Iónicos/metabolismo , Proteínas de la Membrana/metabolismo , Neuronas/metabolismo , Vías Olfatorias , Neuronas Receptoras Olfatorias/citología , Proteína G de Unión al Calcio S100/metabolismo , Transducción de Señal
12.
BMC Neurosci ; 16: 26, 2015 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-25907097

RESUMEN

BACKGROUND: Large conductance, calcium-activated BK channels regulate many important physiological processes, including smooth muscle excitation, hormone release and synaptic transmission. The biological roles of these channels hinge on their unique ability to respond synergistically to both voltage and cytosolic calcium elevations. Because calcium influx is meticulously regulated both spatially and temporally, the localization of BK channels near calcium channels is critical for their proper function. However, the mechanism underlying BK channel localization near calcium channels is not fully understood. RESULTS: We show here that in C. elegans the localization of SLO-1/BK channels to presynaptic terminals, where UNC-2/CaV2 calcium channels regulate neurotransmitter release, is controlled by the hierarchical organization of CTN-1/α-catulin and DYB-1/dystrobrevin, two proteins that interact with cortical cytoskeletal proteins. CTN-1 organizes a macromolecular SLO-1 channel complex at presynaptic terminals by direct physical interaction. DYB-1 contributes to the maintenance or stabilization of the complex at presynaptic terminals by interacting with CTN-1. We also show that SLO-1 channels are functionally coupled with UNC-2 calcium channels, and that normal localization of SLO-1 to presynaptic terminals requires UNC-2. In the absence of UNC-2, SLO-1 clusters lose the localization specificity, thus accumulating inside and outside of presynaptic terminals. Moreover, CTN-1 is also similarly localized in unc-2 mutants, consistent with the direct interaction between CTN-1 and SLO-1. However, localization of UNC-2 at the presynaptic terminals is not dependent on either CTN-1 or SLO-1. Taken together, our data strongly suggest that the absence of UNC-2 indirectly influences SLO-1 localization via the reorganization of cytoskeletal proteins. CONCLUSION: CTN-1 and DYB-1, which interact with cortical cytoskeletal proteins, are required for the presynaptic punctate localization of SLO-1 in a hierarchical manner. In addition, UNC-2 calcium channels indirectly control the fidelity of SLO-1 puncta localization at presynaptic terminals. We suggest that the absence of UNC-2 leads to the reorganization of the cytoskeletal structure that includes CTN-1, which in turn influences SLO-1 puncta localization.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Terminales Presinápticos/metabolismo , alfa Catenina/metabolismo , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Canales de Potasio de Gran Conductancia Activados por el Calcio/genética , Locomoción/fisiología , Proteínas de la Membrana/genética , Microscopía Fluorescente , Mutación
13.
Nat Methods ; 8(2): 147-52, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21240279

RESUMEN

We present an optogenetic illumination system capable of real-time light delivery with high spatial resolution to specified targets in freely moving Caenorhabditis elegans. A tracking microscope records the motion of an unrestrained worm expressing channelrhodopsin-2 or halorhodopsin in specific cell types. Image processing software analyzes the worm's position in each video frame, rapidly estimates the locations of targeted cells and instructs a digital micromirror device to illuminate targeted cells with laser light of the appropriate wavelengths to stimulate or inhibit activity. Because each cell in an unrestrained worm is a rapidly moving target, our system operates at high speed (∼50 frames per second) to provide high spatial resolution (∼30 µm). To test the accuracy, flexibility and utility of our system, we performed optogenetic analyses of the worm motor circuit, egg-laying circuit and mechanosensory circuits that have not been possible with previous methods.


Asunto(s)
Caenorhabditis elegans/fisiología , Movimiento , Neuronas/fisiología , Fenómenos Ópticos , Fotobiología/métodos , Animales , Células Musculares/fisiología
14.
Nat Cell Biol ; 26(1): 72-85, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38168768

RESUMEN

A growing body of evidence indicates that gut microbiota influence brain function and behaviour. However, the molecular basis of how gut bacteria modulate host nervous system function is largely unknown. Here we show that vitamin B12-producing bacteria that colonize the intestine can modulate excitatory cholinergic signalling and behaviour in the host Caenorhabditis elegans. Here we demonstrate that vitamin B12 reduces cholinergic signalling in the nervous system through rewiring of the methionine (Met)/S-adenosylmethionine cycle in the intestine. We identify a conserved metabolic crosstalk between the methionine/S-adenosylmethionine cycle and the choline-oxidation pathway. In addition, we show that metabolic rewiring of these pathways by vitamin B12 reduces cholinergic signalling by limiting the availability of free choline required by neurons to synthesize acetylcholine. Our study reveals a gut-brain communication pathway by which enteric bacteria modulate host behaviour and may affect neurological health.


Asunto(s)
S-Adenosilmetionina , Vitamina B 12 , Animales , Vitamina B 12/metabolismo , S-Adenosilmetionina/metabolismo , Caenorhabditis elegans/metabolismo , Colina/metabolismo , Bacterias/metabolismo , Metionina/metabolismo , Vitaminas/metabolismo , Colinérgicos/metabolismo
15.
bioRxiv ; 2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37961175

RESUMEN

Injured nervous systems are often incapable of self-repairing, resulting in permanent loss of function and disability. To restore function, a severed axon must not only regenerate, but must also reform synapses with target cells. Together, these processes beget functional axon regeneration. Progress has been made towards a mechanistic understanding of axon regeneration. However, the molecular mechanisms that determine whether and how synapses are formed by a regenerated motor axon are not well understood. Using a combination of in vivo laser axotomy, genetics, and high-resolution imaging, we find that poly (ADP-ribose) polymerases (PARPs) inhibit synapse reformation in regenerating axons. As a result, regenerated parp(-) axons regain more function than regenerated wild-type axons, even though both have reached their target cells. We find that PARPs regulate both axon regeneration and synapse reformation in coordination with proteolytic calpain CLP-4. These results indicate approaches to functionally repair the injured nervous system must specifically target synapse reformation, in addition to other components of the injury response.

16.
Elife ; 112022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35703498

RESUMEN

In the aging brain, many of the alterations underlying cognitive and behavioral decline remain opaque. Caenorhabditis elegans offers a powerful model for aging research, with a simple, well-studied nervous system to further our understanding of the cellular modifications and functional alterations accompanying senescence. We perform multi-neuronal functional imaging across the aged C. elegans nervous system, measuring an age-associated breakdown in system-wide functional organization. At single-cell resolution, we detect shifts in activity dynamics toward higher frequencies. In addition, we measure a specific loss of inhibitory signaling that occurs early in the aging process and alters the systems' critical excitatory/inhibitory balance. These effects are recapitulated with mutation of the calcium channel subunit UNC-2/CaV2α. We find that manipulation of inhibitory GABA signaling can partially ameliorate or accelerate the effects of aging. The effects of aging are also partially mitigated by disruption of the insulin signaling pathway, known to increase longevity, or by a reduction of caspase activation. Data from mammals are consistent with our findings, suggesting a conserved shift in the balance of excitatory/inhibitory signaling with age that leads to breakdown in global neuronal dynamics and functional decline.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Envejecimiento/metabolismo , Animales , Caenorhabditis elegans/fisiología , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Longevidad , Mamíferos/metabolismo , Neuronas/fisiología
17.
Elife ; 102021 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-34766905

RESUMEN

Neuromodulators promote adaptive behaviors that are often complex and involve concerted activity changes across circuits that are often not physically connected. It is not well understood how neuromodulatory systems accomplish these tasks. Here, we show that the Caenorhabditis elegans NLP-12 neuropeptide system shapes responses to food availability by modulating the activity of head and body wall motor neurons through alternate G-protein coupled receptor (GPCR) targets, CKR-1 and CKR-2. We show ckr-2 deletion reduces body bend depth during movement under basal conditions. We demonstrate CKR-1 is a functional NLP-12 receptor and define its expression in the nervous system. In contrast to basal locomotion, biased CKR-1 GPCR stimulation of head motor neurons promotes turning during local searching. Deletion of ckr-1 reduces head neuron activity and diminishes turning while specific ckr-1 overexpression or head neuron activation promote turning. Thus, our studies suggest locomotor responses to changing food availability are regulated through conditional NLP-12 stimulation of head or body wall motor circuits.


Asunto(s)
Adaptación Psicológica , Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/fisiología , Neuropéptidos/genética , Receptores Acoplados a Proteínas G/fisiología , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Locomoción/genética , Neuropéptidos/metabolismo , Receptores Acoplados a Proteínas G/genética
18.
Commun Biol ; 4(1): 1018, 2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34465863

RESUMEN

Dioecious species are a hallmark of the animal kingdom, with opposing sexes responding differently to identical sensory cues. Here, we study the response of C. elegans to the small-molecule pheromone, ascr#8, which elicits opposing behavioral valences in each sex. We identify a novel neuropeptide-neuropeptide receptor (NP/NPR) module that is active in males, but not in hermaphrodites. Using a novel paradigm of neuropeptide rescue that we established, we leverage bacterial expression of individual peptides to rescue the sex-specific response to ascr#8. Concurrent biochemical studies confirmed individual FLP-3 peptides differentially activate two divergent receptors, NPR-10 and FRPR-16. Interestingly, the two of the peptides that rescued behavior in our feeding paradigm are related through a conserved threonine, suggesting that a specific NP/NPR combination sets a male state, driving the correct behavioral valence of the ascr#8 response. Receptor expression within pre-motor neurons reveals novel coordination of male-specific and core locomotory circuitries.


Asunto(s)
Caenorhabditis elegans/fisiología , Organismos Hermafroditas/fisiología , Locomoción , Receptores de Neuropéptido/genética , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans , Proteínas Portadoras , Organismos Hermafroditas/genética , Locomoción/efectos de los fármacos , Masculino , Receptores de Neuropéptido/metabolismo
19.
Elife ; 102021 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-33880993

RESUMEN

Animals exhibit behavioral and neural responses that persist on longer timescales than transient or fluctuating stimulus inputs. Here, we report that Caenorhabditis elegans uses feedback from the motor circuit to a sensory processing interneuron to sustain its motor state during thermotactic navigation. By imaging circuit activity in behaving animals, we show that a principal postsynaptic partner of the AFD thermosensory neuron, the AIY interneuron, encodes both temperature and motor state information. By optogenetic and genetic manipulation of this circuit, we demonstrate that the motor state representation in AIY is a corollary discharge signal. RIM, an interneuron that is connected with premotor interneurons, is required for this corollary discharge. Ablation of RIM eliminates the motor representation in AIY, allows thermosensory representations to reach downstream premotor interneurons, and reduces the animal's ability to sustain forward movements during thermotaxis. We propose that feedback from the motor circuit to the sensory processing circuit underlies a positive feedback mechanism to generate persistent neural activity and sustained behavioral patterns in a sensorimotor transformation.


Asunto(s)
Conducta Animal , Caenorhabditis elegans/fisiología , Retroalimentación Sensorial , Interneuronas/fisiología , Actividad Motora , Taxia , Sensación Térmica , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Interneuronas/metabolismo , Vías Nerviosas/fisiología , Transmisión Sináptica , Factores de Tiempo
20.
Front Genet ; 11: 63, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32161616

RESUMEN

Selenium is a trace element for most organisms; its deficiency and excess are detrimental. Selenium beneficial effects are mainly due to the role of the 21st genetically encoded amino acid selenocysteine (Sec). Selenium also exerts Sec-independent beneficial effects. Its harmful effects are thought to be mainly due to non-specific incorporation in protein synthesis. Yet the selenium response in animals is poorly understood. In Caenorhabditis elegans, Sec is genetically incorporated into a single selenoprotein. Similar to mammals, a 20-fold excess of the optimal selenium requirement is harmful. Sodium selenite (Na2SeO3) excess causes development retardation, impaired growth, and neurodegeneration of motor neurons. To study the organismal response to selenium we performed a genetic screen for C. elegans mutants that are resistant to selenite. We isolated non-sense and missense egl-9/EGLN mutants that confer robust resistance to selenium. In contrast, hif-1/HIF null mutant was highly sensitive to selenium, establishing a role for this transcription factor in the selenium response. We showed that EGL-9 regulates HIF-1 activity through VHL-1, and identified CYSL-1 as a key sensor that transduces the selenium signal. Finally, we showed that the key enzymes involved in sulfide and sulfite stress (sulfide quinone oxidoreductase and sulfite oxidase) are not required for selenium resistance. In contrast, knockout strains in the persulfide dioxygenase ETHE-1 and the sulfurtransferase MPST-7 affect the organismal response to selenium. In sum, our results identified a transcriptional pathway as well as enzymes possibly involved in the organismal selenium response.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA