RESUMEN
PURPOSE: Ciliopathies are highly heterogeneous clinical disorders of the primary cilium. We aim to characterize a large cohort of ciliopathies phenotypically and molecularly. METHODS: Detailed phenotypic and genomic analysis of patients with ciliopathies, and functional characterization of novel candidate genes. RESULTS: In this study, we describe 125 families with ciliopathies and show that deleterious variants in previously reported genes, including cryptic splicing variants, account for 87% of cases. Additionally, we further support a number of previously reported candidate genes (BBIP1, MAPKBP1, PDE6D, and WDPCP), and propose nine novel candidate genes (CCDC67, CCDC96, CCDC172, CEP295, FAM166B, LRRC34, TMEM17, TTC6, and TTC23), three of which (LRRC34, TTC6, and TTC23) are supported by functional assays that we performed on available patient-derived fibroblasts. From a phenotypic perspective, we expand the phenomenon of allelism that characterizes ciliopathies by describing novel associations including WDR19-related Stargardt disease and SCLT1- and CEP164-related Bardet-Biedl syndrome. CONCLUSION: In this cohort of phenotypically and molecularly characterized ciliopathies, we draw important lessons that inform the clinical management and the diagnostics of this class of disorders as well as their basic biology.
Asunto(s)
Síndrome de Bardet-Biedl , Ciliopatías , Alelos , Síndrome de Bardet-Biedl/genética , Cilios/genética , Ciliopatías/genética , Humanos , Canales de SodioRESUMEN
Retinal arterial macroaneurysms with supravalvular pulmonic stenosis (RAMSVPS), also known as Familial Retinal Arterial Macroaneurysms (FRAM) syndrome, is a very rare multisystem disorder. Here, we present a case series comprising ophthalmologic and systemic evaluation of patients homozygous for RAMSVPS syndrome causative IGFBP7 variant. New clinical details on 22 previously published and 8 previously unpublished patients are described. Age at first presentation ranged from 1 to 34 years. The classical feature of macroaneurysms and vascular beading involving the retinal arteries was universal. Follow up extending up to 14 years after initial diagnosis revealed recurrent episodes of bleeding and leakage from macroaneurysms in 55% and 59% of patients, respectively. The majority of patients who underwent echocardiography (18/23) showed evidence of heart involvement, most characteristically pulmonary (valvular or supravalvular) stenosis, often requiring surgical correction (12/18). Four patients died in the course of the study from complications of pulmonary stenosis, cerebral hemorrhage, and cardiac complications. Liver involvement (usually cirrhosis) was observed in eight patients. Cerebral vascular involvement was observed in one patient, and stroke was observed in two. We conclude that RAMSVPS is a recognizable syndrome characterized by a high burden of ocular and systemic morbidity, and risk of premature death. Recommendations are proposed for early detection and management of these complications.
Asunto(s)
Predisposición Genética a la Enfermedad , Proteínas de Unión a Factor de Crecimiento Similar a la Insulina/genética , Estenosis de la Válvula Pulmonar/genética , Macroaneurisma Arterial de Retina/genética , Adolescente , Adulto , Niño , Preescolar , Femenino , Angiografía con Fluoresceína , Fondo de Ojo , Homocigoto , Humanos , Lactante , Masculino , Estenosis de la Válvula Pulmonar/complicaciones , Estenosis de la Válvula Pulmonar/diagnóstico por imagen , Estenosis de la Válvula Pulmonar/patología , Macroaneurisma Arterial de Retina/complicaciones , Macroaneurisma Arterial de Retina/diagnóstico por imagen , Macroaneurisma Arterial de Retina/patología , Arteria Retiniana/diagnóstico por imagen , Arteria Retiniana/metabolismo , Arteria Retiniana/patología , Agudeza Visual/genética , Agudeza Visual/fisiología , Adulto JovenRESUMEN
Recently, the genetic cause of HIDEA syndrome (hypotonia, hypoventilation, intellectual disability, dysautonomia, epilepsy, and eye abnormalities) was identified as biallelic pathogenic variants in P4HTM, which encodes an atypical member of the prolyl 4-hydroxylases (P4Hs) family of enzymes. We report seven patients from four new families in whom HIDEA was only diagnosed after whole-exome sequencing (WES) revealed novel disease-causing variants in P4HTM. We note the variable phenotypic expressivity of the syndrome except for cognitive impairment/developmental delay, and hypotonia, which seem to be consistent findings. One patient only presented with hypotonia, developmental delay, and abnormal eye movements, which highlights the challenge in diagnosing milder cases with this new syndrome. Other notable features include mild facial dysmorphism, obesity, and brain dysmyelination and atrophy. We conclude that HIDEA is a highly variable syndrome and suspect that a large fraction of patients will be diagnosed via reverse phenotyping after recessive P4HTM variants are identified by agnostic genomic sequencing assays.
Asunto(s)
Epilepsia/patología , Anomalías del Ojo/patología , Hipoventilación/patología , Discapacidad Intelectual/patología , Hipotonía Muscular/patología , Mutación , Prolil Hidroxilasas/genética , Niño , Preescolar , Discapacidades del Desarrollo , Epilepsia/genética , Anomalías del Ojo/genética , Femenino , Humanos , Hipoventilación/genética , Discapacidad Intelectual/genética , Masculino , Hipotonía Muscular/genética , Linaje , Fenotipo , SíndromeRESUMEN
Primary congenital glaucoma is a trabecular meshwork dysgenesis with resultant increased intraocular pressure and ocular damage. CYP1B1 mutations remain the most common identifiable genetic cause. However, important questions about the penetrance of CYP1B1-related congenital glaucoma remain unanswered. Furthermore, mutations in other genes have been described although their exact contribution and potential genetic interaction, if any, with CYP1B1 mutations are not fully explored. In this study, we employed modern genomic approaches to re-examine CYP1B1-related congenital glaucoma. A cohort of 193 patients (136 families) diagnosed with congenital glaucoma. We identified biallelic CYP1B1 mutations in 80.8% (87.5 and 66.1% in familial and sporadic cases, respectively, p < 0.0086). The large family size of the study population allowed us to systematically examine penetrance of all identified alleles. With the exception of c.1103G>A (p.R368H), previously reported pathogenic mutations were highly penetrant (91.2%). We conclude from the very low penetrance and genetic epidemiological analyses that c.1103G>A (p.R368H) is unlikely to be a disease-causing recessive mutation in congenital glaucoma as previously reported. All cases that lacked biallelic CYP1B1 mutations underwent whole exome sequencing. No mutations in LTBP2, MYOC or TEK were encountered. On the other hand, mutations were identified in genes linked to other ophthalmic phenotypes, some inclusive of glaucoma, highlighting conditions that might phenotypically overlap with primary congenital glaucoma (SLC4A4, SLC4A11, CPAMD8, and KERA). We also encountered candidate causal variants in genes not previously linked to human diseases: BCO2, TULP2, and DGKQ. Our results both expand and refine the genetic spectrum of congenital glaucoma with important clinical implications.
Asunto(s)
Citocromo P-450 CYP1B1/genética , Glaucoma/genética , Alelos , Proteínas de Transporte de Anión/genética , Estudios de Cohortes , Proteínas del Citoesqueleto/genética , Análisis Mutacional de ADN/métodos , Proteínas del Ojo/genética , Femenino , Pruebas Genéticas/métodos , Glicoproteínas/genética , Humanos , Presión Intraocular/genética , Proteínas de Unión a TGF-beta Latente/genética , Masculino , Mutación/genética , Linaje , Penetrancia , Fenotipo , Receptor TIE-2/genética , alfa-Macroglobulinas/genéticaRESUMEN
Variant nomenclature discrepancy was identified in the article.
RESUMEN
PURPOSE: To describe our experience with a large cohort (411 patients from 288 families) of various forms of skeletal dysplasia who were molecularly characterized. METHODS: Detailed phenotyping and next-generation sequencing (panel and exome). RESULTS: Our analysis revealed 224 pathogenic/likely pathogenic variants (54 (24%) of which are novel) in 123 genes with established or tentative links to skeletal dysplasia. In addition, we propose 5 genes as candidate disease genes with suggestive biological links (WNT3A, SUCO, RIN1, DIP2C, and PAN2). Phenotypically, we note that our cohort spans 36 established phenotypic categories by the International Skeletal Dysplasia Nosology, as well as 18 novel skeletal dysplasia phenotypes that could not be classified under these categories, e.g., the novel C3orf17-related skeletal dysplasia. We also describe novel phenotypic aspects of well-known disease genes, e.g., PGAP3-related Toriello-Carey syndrome-like phenotype. We note a strong founder effect for many genes in our cohort, which allowed us to calculate a minimum disease burden for the autosomal recessive forms of skeletal dysplasia in our population (7.16E-04), which is much higher than the global average. CONCLUSION: By expanding the phenotypic, allelic, and locus heterogeneity of skeletal dysplasia in humans, we hope our study will improve the diagnostic rate of patients with these conditions.
Asunto(s)
Exoma/genética , Heterogeneidad Genética , Predisposición Genética a la Enfermedad , Anomalías Musculoesqueléticas/genética , Alelos , Proteínas Sanguíneas/genética , Hidrolasas de Éster Carboxílico , Estudios de Cohortes , Exorribonucleasas/genética , Femenino , Proteínas Fetales/genética , Efecto Fundador , Genética de Población , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Masculino , Proteínas de la Membrana/genética , Anomalías Musculoesqueléticas/clasificación , Anomalías Musculoesqueléticas/patología , Proteínas de Neoplasias/genética , Proteínas Oncogénicas/genética , Fenotipo , Receptores de Superficie Celular/genética , Proteína Wnt3A/genéticaRESUMEN
Intellectual disability (ID) is a common morbid condition with a wide range of etiologies. The list of monogenic forms of ID has increased rapidly in recent years thanks to the implementation of genomic sequencing techniques. In this study, we describe the phenotypic and genetic findings of 68 families (105 patients) all with novel ID-related variants. In addition to established ID genes, including ones for which we describe unusual mutational mechanism, some of these variants represent the first confirmatory disease-gene links following previous reports (TRAK1, GTF3C3, SPTBN4 and NKX6-2), some of which were based on single families. Furthermore, we describe novel variants in 14 genes that we propose as novel candidates (ANKHD1, ASTN2, ATP13A1, FMO4, MADD, MFSD11, NCKAP1, NFASC, PCDHGA10, PPP1R21, SLC12A2, SLK, STK32C and ZFAT). We highlight MADD and PCDHGA10 as particularly compelling candidates in which we identified biallelic likely deleterious variants in two independent ID families each. We also highlight NCKAP1 as another compelling candidate in a large family with autosomal dominant mild intellectual disability that fully segregates with a heterozygous truncating variant. The candidacy of NCKAP1 is further supported by its biological function, and our demonstration of relevant expression in human brain. Our study expands the locus and allelic heterogeneity of ID and demonstrates the power of positional mapping to reveal unusual mutational mechanisms.
Asunto(s)
Exoma/genética , Heterogeneidad Genética , Marcadores Genéticos , Discapacidad Intelectual/genética , Mutación , Femenino , Predisposición Genética a la Enfermedad , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Linaje , Conformación ProteicaRESUMEN
Bardet-Biedl syndrome (BBS) is an autosomal recessive ciliopathy with multisystem involvement. So far, 18 BBS genes have been identified and the majority of them are essential for the function of BBSome, a protein complex involved in transporting membrane proteins into and from cilia. Yet defects in the identified genes cannot account for all the BBS cases. The genetic heterogeneity of this disease poses significant challenge to the identification of additional BBS genes. In this study, we coupled human genetics with functional validation in zebrafish and identified IFT27 as a novel BBS gene (BBS19). This is the first time an intraflagellar transport (IFT) gene is implicated in the pathogenesis of BBS, highlighting the genetic complexity of this disease.
Asunto(s)
Síndrome de Bardet-Biedl/enzimología , Síndrome de Bardet-Biedl/patología , Consanguinidad , Proteínas de Unión al GTP Monoméricas/genética , Proteínas de Unión al GTP Monoméricas/metabolismo , Adolescente , Secuencia de Aminoácidos , Animales , Síndrome de Bardet-Biedl/genética , Evolución Molecular , Exoma , Femenino , Predisposición Genética a la Enfermedad , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Modelos Moleculares , Proteínas de Unión al GTP Monoméricas/química , Linaje , Mutación Puntual , Arabia Saudita , Alineación de Secuencia , Pez CebraRESUMEN
MERTK is an essential component of the signaling network that controls phagocytosis in retinal pigment epithelium (RPE), the loss of which results in photoreceptor degeneration. Previous proof-of-concept studies have demonstrated the efficacy of gene therapy using human MERTK (hMERTK) packaged into adeno-associated virus (AAV2) in treating RCS rats and mice with MERTK deficiency. The purpose of this study was to assess the safety of gene transfer via subretinal administration of rAAV2-VMD2-hMERTK in subjects with MERTK-associated retinitis pigmentosa (RP). After a preclinical phase confirming the safety of the study vector in monkeys, six patients (aged 14 to 54, mean 33.3 years) with MERTK-related RP and baseline visual acuity (VA) ranging from 20/50 to <20/6400 were entered in a phase I open-label, dose-escalation trial. One eye of each patient (the worse-seeing eye in five subjects) received a submacular injection of the viral vector, first at a dose of 150 µl (5.96 × 10(10)vg; 2 patients) and then 450 µl (17.88 × 10(10)vg; 4 patients). Patients were followed daily for 10 days at 30, 60, 90, 180, 270, 365, 540, and 730 days post-injection. Collected data included (1) full ophthalmologic examination including best-corrected VA, intraocular pressure, color fundus photographs, macular spectral domain optical coherence tomography and full-field stimulus threshold test (FST) in both the study and fellow eyes; (2) systemic safety data including CBC, liver and kidney function tests, coagulation profiles, urine analysis, AAV antibody titers, peripheral blood PCR and ASR measurement; and (3) listing of ophthalmological or systemic adverse effects. All patients completed the 2-year follow-up. Subretinal injection of rAAV2-VMD2-hMERTK was associated with acceptable ocular and systemic safety profiles based on 2-year follow-up. None of the patients developed complications that could be attributed to the gene vector with certainty. Postoperatively, one patient developed filamentary keratitis, and two patients developed progressive cataract. Of these two patients, one also developed transient subfoveal fluid after the injection as well as monocular oscillopsia. Two patients developed a rise in AAV antibodies, but neither patient was positive for rAAV vector genomes via PCR. Three patients also displayed measurable improved visual acuity in the treated eye following surgery, although the improvement was lost by 2 years in two of these patients. Gene therapy for MERTK-related RP using careful subretinal injection of rAAV2-VMD2-hMERTK is not associated with major side effects and may result in clinical improvement in a subset of patients.
Asunto(s)
Terapia Genética/métodos , Proteínas Proto-Oncogénicas/genética , Proteínas Tirosina Quinasas Receptoras/genética , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/terapia , Adolescente , Adulto , Animales , Dependovirus/genética , Modelos Animales de Enfermedad , Determinación de Punto Final , Femenino , Estudios de Seguimiento , Vectores Genéticos , Humanos , Macaca , Masculino , Persona de Mediana Edad , Mutación , Complicaciones Posoperatorias/terapia , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Líquido Subretiniano , Tomografía de Coherencia Óptica , Resultado del Tratamiento , Agudeza Visual , Adulto Joven , Tirosina Quinasa c-MerRESUMEN
UNLABELLED: Diabetic retinopathy (DR) is a common clinical expression of diabetes mellitus-induced vasculopathy and is a major cause of vision loss. Significant gaps remain in our understanding of the molecular pathoetiology of DR, and it is hoped that human genetic approaches can reveal novel targets especially since DR is a heritable trait. Previous studies have focused on genetic risk factors of DR but their results have been mixed. In this study, we hypothesized that the use of the extreme phenotype design will increase the power of a genomewide search for "protective" genetic variants. We enrolled a small yet atypical cohort of 43 diabetics who did not develop DR a decade or more after diagnosis (cases), and 64 diabetics with DR (controls), all of similar ethnic background (Saudi). Whole-exome sequencing of the entire cohort was followed by statistical analysis employing combined multivariate and collapsing methods at the gene level, to identify genes that are enriched for rare variants in cases vs. CONTROLS: Three genes (NME3, LOC728699, and FASTK) reached gene-based genome-wide significance at the 10(-08) threshold (p value = 1.55 × 10(-10), 6.23 × 10(-10), 3.21 × 10(-08), respectively). Our results reveal novel candidate genes whose increased rare variant burden appears to protect against DR, thus highlighting them as attractive candidate targets, if replicated by future studies, for the treatment and prevention of DR. Extreme phenotype design when implemented in sequencing-based genome-wide case-control studies has the potential to reveal novel candidates with a smaller cohort size compared to standard study designs.
Asunto(s)
Retinopatía Diabética/genética , Exoma , Fenotipo , Alelos , Estudios de Casos y Controles , Retinopatía Diabética/diagnóstico , Marcadores Genéticos , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Análisis Multivariante , Nucleósido Difosfato Quinasas NM23/genética , Polimorfismo de Nucleótido Simple , Proteínas Serina-Treonina Quinasas/genética , Arabia Saudita , Análisis de Secuencia de ADNRESUMEN
Myopia is an extremely common eye disorder but the pathogenesis of its isolated form, which accounts for the overwhelming majority of cases, remains poorly understood. There is strong evidence for genetic predisposition to myopia, but determining myopia genetic risk factors has been difficult to achieve. We have identified Mendelian forms of myopia in four consanguineous families and implemented exome/autozygome analysis to identify homozygous truncating variants in LRPAP1 and CTSH as the likely causal mutations. LRPAP1 encodes a chaperone of LRP1, which is known to influence TGF-ß activity. Interestingly, we observed marked deficiency of LRP1 and upregulation of TGF-ß in cells from affected individuals, the latter being consistent with available data on the role of TGF-ß in the remodeling of the sclera in myopia and the high frequency of myopia in individuals with Marfan syndrome who characteristically have upregulation of TGF-ß signaling. CTSH, on the other hand, encodes a protease and we show that deficiency of the murine ortholog results in markedly abnormal globes consistent with the observed human phenotype. Our data highlight a role for LRPAP1 and CTSH in myopia genetics and demonstrate the power of Mendelian forms in illuminating new molecular mechanisms that may be relevant to common phenotypes.
Asunto(s)
Catepsina H/genética , Proteína Asociada a Proteínas Relacionadas con Receptor de LDL/genética , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Síndrome de Marfan/genética , Mutación , Miopía/genética , Factor de Crecimiento Transformador beta/genética , Adolescente , Animales , Catepsina H/metabolismo , Niño , Preescolar , Femenino , Expresión Génica , Predisposición Genética a la Enfermedad , Homocigoto , Humanos , Lactante , Proteína Asociada a Proteínas Relacionadas con Receptor de LDL/metabolismo , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Masculino , Síndrome de Marfan/metabolismo , Síndrome de Marfan/patología , Ratones , Miopía/metabolismo , Miopía/patología , Linaje , Fenotipo , Esclerótica/metabolismo , Esclerótica/patología , Índice de Severidad de la Enfermedad , Factor de Crecimiento Transformador beta/metabolismoRESUMEN
Retinal dystrophy (RD) is a heterogeneous group of hereditary diseases caused by loss of photoreceptor function and contributes significantly to the etiology of blindness globally but especially in the industrialized world. The extreme locus and allelic heterogeneity of these disorders poses a major diagnostic challenge and often impedes the ability to provide a molecular diagnosis that can inform counseling and gene-specific treatment strategies. In a large cohort of nearly 150 RD families, we used genomic approaches in the form of autozygome-guided mutation analysis and exome sequencing to identify the likely causative genetic lesion in the majority of cases. Additionally, our study revealed six novel candidate disease genes (C21orf2, EMC1, KIAA1549, GPR125, ACBD5, and DTHD1), two of which (ACBD5 and DTHD1) were observed in the context of syndromic forms of RD that are described for the first time.
Asunto(s)
Exoma , Mutación , Distrofias Retinianas/genética , Familia , Estudios de Asociación Genética , Genotipo , Humanos , Fenotipo , Análisis de Secuencia de ADNRESUMEN
PURPOSE: Retinal dystrophies (RD) are heterogeneous hereditary disorders of the retina that are usually progressive in nature. The aim of this study was to clinically and molecularly characterize a large cohort of RD patients. METHODS: We have developed a next-generation sequencing assay that allows known RD genes to be sequenced simultaneously. We also performed mapping studies and exome sequencing on familial and on syndromic RD patients who tested negative on the panel. RESULTS: Our panel identified the likely causal mutation in >60% of the 292 RD families tested. Mapping studies on all 162 familial RD patients who tested negative on the panel identified two novel disease loci on Chr2:25,550,180-28,794,007 and Chr16:59,225,000-72,511,000. Whole-exome sequencing revealed the likely candidate as AGBL5 and CDH16, respectively. We also performed exome sequencing on negative syndromic RD cases and identified a novel homozygous truncating mutation in GNS in a family with the novel combination of mucopolysaccharidosis and RD. Moreover, we identified a homozygous truncating mutation in DNAJC17 in a family with an apparently novel syndrome of retinitis pigmentosa and hypogammaglobulinemia. CONCLUSION: Our study expands the clinical and allelic spectrum of known RD genes, and reveals AGBL5, CDH16, and DNAJC17 as novel disease candidates.Genet Med 18 6, 554-562.
Asunto(s)
Cadherinas/genética , Carboxipeptidasas/genética , Proteínas de Transporte de Membrana Mitocondrial/genética , Distrofias Retinianas/genética , Femenino , Homocigoto , Humanos , Masculino , Mutación , Linaje , Fenotipo , Retina/patología , Distrofias Retinianas/diagnóstico , Distrofias Retinianas/patología , Secuenciación del ExomaRESUMEN
Very-long-chain fatty acids (VLCFAs) play important roles in membrane structure and cellular signaling, and their contribution to human health is increasingly recognized. Fatty acid elongases catalyze the first and rate-limiting step in VLCFA synthesis. Heterozygous mutations in ELOVL4, the gene encoding one of the elongases, are known to cause macular degeneration in humans and retinal abnormalities in mice. However, biallelic ELOVL4 mutations have not been observed in humans, and murine models with homozygous mutations die within hours of birth as a result of a defective epidermal water barrier. Here, we report on two human individuals with recessive ELOVL4 mutations revealed by a combination of autozygome analysis and exome sequencing. These individuals exhibit clinical features of ichthyosis, seizures, mental retardation, and spasticity-a constellation that resembles Sjögren-Larsson syndrome (SLS) but presents a more severe neurologic phenotype. Our findings identify recessive mutations in ELOVL4 as the cause of a neuro-ichthyotic disease and emphasize the importance of VLCFA synthesis in brain and cutaneous development.
Asunto(s)
Anomalías Múltiples/genética , Proteínas del Ojo/genética , Genes Recesivos , Ictiosis/genética , Discapacidad Intelectual/genética , Proteínas de la Membrana/genética , Cuadriplejía/genética , Anomalías Múltiples/diagnóstico , Secuencia de Bases , Preescolar , Consanguinidad , Discapacidades del Desarrollo/genética , Exoma , Resultado Fatal , Ácidos Grasos/metabolismo , Estudios de Asociación Genética , Humanos , Ictiosis/diagnóstico , Discapacidad Intelectual/diagnóstico , Masculino , Cuadriplejía/diagnóstico , Análisis de Secuencia de ADNRESUMEN
Insulin-like growth factor binding proteins (IGFBPs) play important physiological functions through the modulation of IGF signaling as well as IGF-independent mechanisms. Despite the established role of IGFs in development, a similar role for the seven known IGFBPs has not been established in humans. Here, we show that an autosomal-recessive syndrome that consists of progressive retinal arterial macroaneurysms and supravalvular pulmonic stenosis is caused by mutation of IGFBP7. Consistent with the recently established inhibitory role of IGFBP7 on BRAF signaling, the BRAF/MEK/ERK pathway is upregulated in these patients, which may explain why the cardiac phenotype overlaps with other disorders characterized by germline mutations in this pathway. The retinal phenotype appears to be mediated by a role in vascular endothelium, where IGFBP7 is highly expressed.
Asunto(s)
Aneurisma/genética , Quinasas MAP Reguladas por Señal Extracelular/genética , Proteínas de Unión a Factor de Crecimiento Similar a la Insulina/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Mutación/genética , Proteínas Proto-Oncogénicas B-raf/genética , Arteria Retiniana/patología , Adolescente , Adulto , Aneurisma/patología , Secuencia de Bases , Niño , Preescolar , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Familia , Femenino , Humanos , Sistema de Señalización de MAP Quinasas/genética , Masculino , Datos de Secuencia Molecular , Linaje , Fenotipo , Empalme del ARN/genética , Arteria Retiniana/enzimología , Regulación hacia Arriba/genética , Adulto JovenRESUMEN
Very long chain polyunsaturated fatty acid (VLC-PUFA)-containing glycerophospholipids are highly enriched in the retina; however, details regarding the specific synthesis and function of these highly unusual retinal glycerophospholipids are lacking. Elongation of very long chain fatty acids-4 (ELOVL4) has been identified as a fatty acid elongase protein involved in the synthesis of VLC-PUFAs. Mutations in ELOVL4 have also been implicated in an autosomal dominant form of Stargardt disease (STGD3), a type of juvenile macular degeneration. We have generated photoreceptor-specific conditional knock-out mice and used high performance liquid chromatography-mass spectrometry (HPLC-MS) to examine and analyze the fatty acid composition of retinal membrane glycerophosphatidylcholine and glycerophosphatidylethanolamine species. We also used immunofluorescent staining and histology coupled with electrophysiological data to assess retinal morphology and visual response. The conditional knock-out mice showed a significant decrease in retinal glycerophospholipids containing VLC-PUFAs, specifically contained in the sn-1 position of glycerophosphatidylcholine, implicating the role of Elovl4 in their synthesis. Conditional knock-out mice were also found to have abnormal accumulation of lipid droplets and lipofuscin-like granules while demonstrating photoreceptor-specific abnormalities in visual response, indicating the critical role of Elovl4 for proper rod or cone photoreceptor function. Altogether, this study demonstrates the essential role of ELOVL4 in VLC-PUFA synthesis and retinal function.
Asunto(s)
Proteínas del Ojo/metabolismo , Ácidos Grasos Insaturados/biosíntesis , Ácidos Grasos Insaturados/química , Proteínas de la Membrana/metabolismo , Células Fotorreceptoras Retinianas Conos/citología , Células Fotorreceptoras Retinianas Conos/metabolismo , Células Fotorreceptoras Retinianas Bastones/citología , Células Fotorreceptoras Retinianas Bastones/metabolismo , Animales , Membrana Celular/metabolismo , Fenómenos Electrofisiológicos , Proteínas del Ojo/genética , Técnicas de Inactivación de Genes , Glicerofosfolípidos/metabolismo , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Ratones , Fosforilcolina/metabolismoRESUMEN
BACKGROUND: Long-read whole genome sequencing (lrWGS) has the potential to address the technical limitations of exome sequencing in ways not possible by short-read WGS. However, its utility in autosomal recessive Mendelian diseases is largely unknown. METHODS: In a cohort of 34 families in which the suspected autosomal recessive diseases remained undiagnosed by exome sequencing, lrWGS was performed on the Pacific Bioscience Sequel IIe platform. RESULTS: Likely causal variants were identified in 13 (38%) of the cohort. These include (1) a homozygous splicing SV in TYMS as a novel candidate gene for lethal neonatal lactic acidosis, (2) a homozygous non-coding SV that we propose impacts STK25 expression and causes a novel neurodevelopmental disorder, (3) a compound heterozygous SV in RP1L1 with complex inheritance pattern in a family with inherited retinal disease, (4) homozygous deep intronic variants in LEMD2 and SNAP91 as novel candidate genes for neurodevelopmental disorders in two families, and (5) a promoter SNV in SLC4A4 causing non-syndromic band keratopathy. Surprisingly, we also encountered causal variants that could have been identified by short-read exome sequencing in 7 families. The latter highlight scenarios that are especially challenging at the interpretation level. CONCLUSIONS: Our data highlight the continued need to address the interpretation challenges in parallel with efforts to improve the sequencing technology itself. We propose a path forward for the implementation of lrWGS sequencing in the setting of autosomal recessive diseases in a way that maximizes its utility.
Asunto(s)
Exoma , Patrón de Herencia , Recién Nacido , Humanos , Genes Recesivos , Mutación , Secuenciación del Exoma , Linaje , Proteínas del Ojo/genética , Proteínas de la Membrana/genética , Proteínas Nucleares/genética , Proteínas Serina-Treonina Quinasas/genética , Péptidos y Proteínas de Señalización Intracelular/genéticaRESUMEN
BACKGROUND: Knobloch syndrome (KS) is a developmental disorder characterised by occipital skull defect, high myopia, and vitreo-retinal degeneration. Although genetic heterogeneity has been suspected, COL18A1 is the only known KS disease gene to date. OBJECTIVE: To identify a novel genetic cause of KS in a cohort of Saudi KS patients enrolled in this study. METHODS: When COL18A1 mutation was excluded, autozygosity mapping was combined with exome sequencing. RESULTS: In one patient with first cousin parents, COL18A1 was excluded by both linkage and direct sequencing. By filtering variants generated on exome sequencing using runs of autozygosity in this simplex case, the study identified ADAMTS18 as the only gene carrying a homozygous protein altering mutation. It was also shown that Adamts18 is expressed in the lens and retina in the developing murine eye. CONCLUSION: The power of combining exome and autozygome analysis in the study of genetics of autosomal recessive disorders, even in simplex cases, has been demonstrated.
Asunto(s)
Proteínas ADAM/genética , Encefalocele/genética , Mutación , Desprendimiento de Retina/congénito , Proteínas ADAM/metabolismo , Proteínas ADAMTS , Animales , Secuencia de Bases , Consanguinidad , Embrión de Mamíferos/metabolismo , Encefalocele/metabolismo , Encefalocele/patología , Exoma , Femenino , Heterogeneidad Genética , Humanos , Cristalino/metabolismo , Masculino , Ratones , Datos de Secuencia Molecular , Linaje , Fenotipo , Retina/metabolismo , Degeneración Retiniana , Desprendimiento de Retina/genética , Desprendimiento de Retina/metabolismo , Desprendimiento de Retina/patologíaRESUMEN
Cyclosporin A (CsA) is a widely used immunosuppressant drug. Its immunosuppressive activity occurs through the inhibition of the protein phosphatase calcineurin via formation of a ternary complex with cyclophilin A (CypA). CsA also inhibits endothelial cell proliferation and angiogenesis. This has been thought to occur through calcineurin inhibition as well. However, CsA is also a potent inhibitor of cyclophilins, a class of prolyl isomerases. Because calcineurin inhibition requires binding, and therefore inhibition of CypA, the relative contributions of calcineurin and cyclophilin inhibition in antiangiogenesis have not been addressed. We have taken a chemical biology approach to explore this question by dissociating the two activities of CsA at the molecular level. We have identified a nonimmunosuppressive analog of CsA that does not inhibit calcineurin but maintains inhibition of endothelial cell proliferation and in vivo angiogenesis. The same analog also maintains inhibition of all cyclophilin isoforms tested. We also show that a second, structurally distinct, cyclophilin inhibitor is sufficient to block endothelial cell proliferation. These results suggest that the inhibition of cyclophilins may play a larger role in the antiangiogenic activity of CsA than previously believed, and that cyclophilins may be potential antiangiogenic drug targets.