Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int Immunopharmacol ; 109: 108915, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35679663

RESUMEN

Hinokitiol is a natural bio-active tropolone derivative with promising antioxidant and anti-inflammatory properties. This study was conducted to evaluate the ameliorative effects of hinokitiol against acute pancreatitis induced by cerulein. Mice were pre-treated with hinokitiol intraperitoneally for 7 days (50 and 100 mg/kg), and on the final day of study, cerulein (6 × 50 µg/kg) was injected every hour for six times. Six hours after the last dose of cerulein, blood was collected from the mice through retro-orbital plexus for biochemical analysis. After blood collection, mice were euthanized and the pancreas was harvested for studying effects on oxidative stress, pro-inflammatory cytokines, immunohistochemistry and histopathology of tissue sections. Hinokitiol treatment significantly reduced edema of the pancreas and reduced the plasma levels of lipase and amylase in mice with cerulein-induced acute pancreatitis. It also attenuated the oxidative and nitrosative stress related damage as evident from the reduced malondialdehyde (MDA) and nitrite levels, which were significantly increased in the mice with acute pancreatitis. Furthermore, hinokitiol administration significantly reduced the pancreatitis-evoked decrease in the activity of catalase, glutathione (GSH) and superoxide dismutase (SOD) in the pancreatic tissue. Pre-treatment with hinokitiol significantly reduced the elevated levels of pro-inflammatory cytokines like interleukin-6 (IL-6), interleukin-1ß (IL-1ß), tumor necrosis factor-alpha (TNF-α) as well as increased the levels of anti-inflammatory cytokine interleukin-10 (IL-10) in the pancreatic tissue of mice with acute pancreatitis. The immunohistochemical expression of nuclear factor kappa light chain enhancer of activated B cells (NF-κB), cyclooxygenase (COX-2) and TNF-α were significantly decreased by hinokitiol in mice with cerulein-induced acute pancreatitis. In conclusion, the results of the present study demonstrate that hinokitiol has significant potential to prevent cerulein-induced acute pancreatitis.


Asunto(s)
Ceruletida , Pancreatitis , Enfermedad Aguda , Animales , Antiinflamatorios/farmacología , Ceruletida/farmacología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Ratones , Monoterpenos , FN-kappa B/metabolismo , Páncreas/patología , Pancreatitis/inducido químicamente , Pancreatitis/tratamiento farmacológico , Pancreatitis/patología , Tropolona/análogos & derivados , Tropolona/metabolismo , Tropolona/farmacología , Tropolona/uso terapéutico , Factor de Necrosis Tumoral alfa/metabolismo
2.
Eur J Drug Metab Pharmacokinet ; 41(6): 733-741, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26458556

RESUMEN

BACKGROUND AND OBJECTIVES: Infection and inflammation are known to cause wide variability in disposition of drugs through modulation of drug transporters. However, the effects of inhibition of multidrug resistance protein 4 (MRP4) on pharmacokinetics and pharmacodynamics are poorly understood in normal and inflamed conditions. We hypothesized that inflammation alters the pharmacokinetic parameters of ciprofloxacin; and Pharmacokinetic/Pharmacodynamic indices, such as ratio of peak plasma concentration to minimum inhibitory concentration (C max/MIC) and ratio of area under the plasma drug concentration-time curve to minimum inhibitory concentration (AUC/MIC) of ciprofloxacin will be improved with the co-administration of a MRP4 inhibitor, dipyridamole, in inflammatory conditions. METHODS: In this study, the role of MRP4 on the pharmacokinetic and pharmacodynamic parameters of ciprofloxacin was investigated by the co-administration of dipyridamole in rats with or without lipopolysaccharide (LPS)-induced inflammation. The pharmacokinetic parameters for ciprofloxacin were calculated by non-compartmental approach. MIC of ciprofloxacin was determined using broth microdilution technique. RESULTS: Induction of inflammation in rats resulted in marked reduction in C max and AUC; and an increase in the volume of distribution (V d/F) and clearance (Cl/F) of ciprofloxacin, compared to normal rats. Co-administration of dipyridamole with ciprofloxacin in inflamed rats resulted in a threefold increase in AUC, a twofold decrease in V d/F and a threefold decrease in Cl/F of ciprofloxacin with significantly prolonged half-life compared to inflamed rats who received ciprofloxacin alone. Co-administration of dipyridamole enhanced AUC/MIC values of ciprofloxacin in both normal and inflamed rats. CONCLUSIONS: The results suggest that MRP4 inhibition increases the systemic exposure of ciprofloxacin in both normal and inflammatory conditions.


Asunto(s)
Antibacterianos/farmacocinética , Ciprofloxacina/farmacocinética , Dipiridamol/farmacología , Fluoroquinolonas/farmacocinética , Moduladores del Transporte de Membrana/farmacología , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/antagonistas & inhibidores , Animales , Antibacterianos/sangre , Antibacterianos/química , Antibacterianos/uso terapéutico , Área Bajo la Curva , Disponibilidad Biológica , Biotransformación , Ciprofloxacina/agonistas , Ciprofloxacina/sangre , Ciprofloxacina/uso terapéutico , Dipiridamol/uso terapéutico , Sinergismo Farmacológico , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Escherichia coli/inmunología , Infecciones por Escherichia coli/sangre , Infecciones por Escherichia coli/tratamiento farmacológico , Infecciones por Escherichia coli/inmunología , Infecciones por Escherichia coli/metabolismo , Fluoroquinolonas/agonistas , Fluoroquinolonas/sangre , Fluoroquinolonas/uso terapéutico , Semivida , Lipopolisacáridos/toxicidad , Masculino , Moduladores del Transporte de Membrana/uso terapéutico , Tasa de Depuración Metabólica , Pruebas de Sensibilidad Microbiana , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Distribución Aleatoria , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA