Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
BMC Med ; 19(1): 241, 2021 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-34620173

RESUMEN

BACKGROUND: Women with a history of gestational diabetes mellitus (GDM) have a 7-fold higher risk of developing type 2 diabetes (T2D). It is estimated that 20-50% of women with GDM history will progress to T2D within 10 years after delivery. Intensive lactation could be negatively associated with this risk, but the mechanisms behind a protective effect remain unknown. METHODS: In this study, we utilized a prospective GDM cohort of 1010 women without T2D at 6-9 weeks postpartum (study baseline) and tested for T2D onset up to 8 years post-baseline (n=980). Targeted metabolic profiling was performed on fasting plasma samples collected at both baseline and follow-up (1-2 years post-baseline) during research exams in a subset of 350 women (216 intensive breastfeeding, IBF vs. 134 intensive formula feeding or mixed feeding, IFF/Mixed). The relationship between lactation intensity and circulating metabolites at both baseline and follow-up were evaluated to discover underlying metabolic responses of lactation and to explore the link between these metabolites and T2D risk. RESULTS: We observed that lactation intensity was strongly associated with decreased glycerolipids (TAGs/DAGs) and increased phospholipids/sphingolipids at baseline. This lipid profile suggested decreased lipogenesis caused by a shift away from the glycerolipid metabolism pathway towards the phospholipid/sphingolipid metabolism pathway as a component of the mechanism underlying the benefits of lactation. Longitudinal analysis demonstrated that this favorable lipid profile was transient and diminished at 1-2 years postpartum, coinciding with the cessation of lactation. Importantly, when stratifying these 350 women by future T2D status during the follow-up (171 future T2D vs. 179 no T2D), we discovered that lactation induced robust lipid changes only in women who did not develop incident T2D. Subsequently, we identified a cluster of metabolites that strongly associated with future T2D risk from which we developed a predictive metabolic signature with a discriminating power (AUC) of 0.78, superior to common clinical variables (i.e., fasting glucose, AUC 0.56 or 2-h glucose, AUC 0.62). CONCLUSIONS: In this study, we show that intensive lactation significantly alters the circulating lipid profile at early postpartum and that women who do not respond metabolically to lactation are more likely to develop T2D. We also discovered a 10-analyte metabolic signature capable of predicting future onset of T2D in IBF women. Our findings provide novel insight into how lactation affects maternal metabolism and its link to future diabetes onset. TRIAL REGISTRATION: ClinicalTrials.gov NCT01967030 .


Asunto(s)
Diabetes Mellitus Tipo 2 , Diabetes Gestacional , Glucemia , Lactancia Materna , Diabetes Gestacional/epidemiología , Femenino , Humanos , Lactancia , Lípidos , Periodo Posparto , Embarazo , Estudios Prospectivos
2.
J Clin Endocrinol Metab ; 107(9): 2652-2665, 2022 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-35666146

RESUMEN

CONTEXT: Prolactin is a multifaceted hormone known to regulate lactation. In women with gestational diabetes mellitus (GDM) history, intensive lactation has been associated with lower relative risk of future type 2 diabetes (T2D). However, the role of prolactin in T2D development and maternal metabolism in women with a recent GDM pregnancy has not been ascertained. OBJECTIVE: We examined the relationships among prolactin, future T2D risk, and key clinical and metabolic parameters. METHODS: We utilized a prospective GDM research cohort (the SWIFT study) and followed T2D onset by performing 2-hour 75-g research oral glucose tolerance test (OGTT) at study baseline (6-9 weeks postpartum) and again annually for 2 years, and also by retrieving clinical diagnoses of T2D from 2 years through 10 years of follow up from electronic medical records. Targeted metabolomics and lipidomics were applied on fasting plasma samples collected at study baseline from 2-hour 75-g research OGTTs in a nested case-control study (100 future incident T2D cases vs 100 no T2D controls). RESULTS: Decreasing prolactin quartiles were associated with increased future T2D risk (adjusted odds ratio 2.48; 95% CI, 0.81-7.58; P = 0.05). In women who maintained normoglycemia during the 10-year follow-up period, higher prolactin at baseline was associated with higher insulin sensitivity (P = 0.038) and HDL-cholesterol (P = 0.01), but lower BMI (P = 0.001) and leptin (P = 0.002). Remarkably, among women who developed future T2D, prolactin was not correlated with a favorable metabolic status (all P > 0.05). Metabolomics and lipidomics showed that lower circulating prolactin strongly correlated with a T2D-high risk lipid profile, with elevated circulating neutral lipids and lower concentrations of specific phospholipids/sphingolipids. CONCLUSION: In women with recent GDM pregnancy, low circulating prolactin is associated with specific clinical and metabolic parameters and lipid metabolites linked to a high risk of developing T2D.


Asunto(s)
Diabetes Mellitus Tipo 2 , Diabetes Gestacional , Glucemia/metabolismo , Estudios de Casos y Controles , HDL-Colesterol , Diabetes Mellitus Tipo 2/epidemiología , Femenino , Humanos , Embarazo , Prolactina , Estudios Prospectivos , Factores de Riesgo
3.
Diabetes ; 65(9): 2529-39, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27338739

RESUMEN

Gestational diabetes mellitus (GDM) affects 3-14% of pregnancies, with 20-50% of these women progressing to type 2 diabetes (T2D) within 5 years. This study sought to develop a metabolomics signature to predict the transition from GDM to T2D. A prospective cohort of 1,035 women with GDM pregnancy were enrolled at 6-9 weeks postpartum (baseline) and were screened for T2D annually for 2 years. Of 1,010 women without T2D at baseline, 113 progressed to T2D within 2 years. T2D developed in another 17 women between 2 and 4 years. A nested case-control design used 122 incident case patients matched to non-case patients by age, prepregnancy BMI, and race/ethnicity. We conducted metabolomics with baseline fasting plasma and identified 21 metabolites that significantly differed by incident T2D status. Machine learning optimization resulted in a decision tree modeling that predicted T2D incidence with a discriminative power of 83.0% in the training set and 76.9% in an independent testing set, which is far superior to measuring fasting plasma glucose levels alone. The American Diabetes Association recommends T2D screening in the early postpartum period via oral glucose tolerance testing after GDM, which is a time-consuming and inconvenient procedure. Our metabolomics signature predicted T2D incidence from a single fasting blood sample. This study represents the first metabolomics study of the transition from GDM to T2D validated in an independent testing set, facilitating early interventions.


Asunto(s)
Diabetes Mellitus Tipo 2/epidemiología , Diabetes Gestacional/epidemiología , Adulto , Glucemia/metabolismo , Estudios de Casos y Controles , Diabetes Mellitus Tipo 2/sangre , Diabetes Gestacional/sangre , Femenino , Prueba de Tolerancia a la Glucosa , Humanos , Incidencia , Persona de Mediana Edad , Periodo Posparto/sangre , Embarazo , Estudios Prospectivos , Adulto Joven
4.
PLoS One ; 8(10): e77003, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24155916

RESUMEN

Glucose transporter (GLUT) proteins play a key role in the transport of monosaccharides across cellular membranes, and thus, blood sugar regulation and tissue metabolism. Patterns of GLUT expression, including the insulin-responsive GLUT4, have been well characterized in mammals. However, relatively little is known about patterns of GLUT expression in birds with existing data limited to the granivorous or herbivorous chicken, duck and sparrow. The smallest avian taxa, hummingbirds, exhibit some of the highest fasted and fed blood glucose levels and display an unusual ability to switch rapidly and completely between endogenous fat and exogenous sugar to fuel energetically expensive hovering flight. Despite this, nothing is known about the GLUT transporters that enable observed rapid rates of carbohydrate flux. We examined GLUT (GLUT1, 2, 3, & 4) expression in pectoralis, leg muscle, heart, liver, kidney, intestine and brain from both zebra finches (Taeniopygia guttata) and ruby-throated hummingbirds (Archilochus colubris). mRNA expression of all four transporters was probed using reverse-transcription PCR (RT-PCR). In addition, GLUT1 and 4 protein expression were assayed by western blot and immunostaining. Patterns of RNA and protein expression of GLUT1-3 in both species agree closely with published reports from other birds and mammals. As in other birds, and unlike in mammals, we did not detect GLUT4. A lack of GLUT4 correlates with hyperglycemia and an uncoupling of exercise intensity and relative oxidation of carbohydrates in hummingbirds. The function of GLUTs present in hummingbird muscle tissue (e.g. GLUT1 and 3) remain undescribed. Thus, further work is necessary to determine if high capillary density, and thus surface area across which cellular-mediated transport of sugars into active tissues (e.g. muscle) occurs, rather than taxon-specific differences in GLUT density or kinetics, can account for observed rapid rates of sugar flux into these tissues.


Asunto(s)
Aves/genética , Conducta Alimentaria , Regulación de la Expresión Génica , Proteínas Facilitadoras del Transporte de la Glucosa/genética , Néctar de las Plantas/metabolismo , Animales , Secuencia de Bases , ADN Complementario/genética , Perfilación de la Expresión Génica , Proteínas Facilitadoras del Transporte de la Glucosa/metabolismo , Inmunohistoquímica , Especificidad de Órganos/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido , Coloración y Etiquetado
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA