Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
PLoS Genet ; 20(3): e1011187, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38457464

RESUMEN

BACKGROUND: Recent developments in CRISPR/Cas9 genome-editing tools have facilitated the introduction of precise alleles, including genetic intervals spanning several kilobases, directly into the embryo. However, the introduction of donor templates, via homology directed repair, can be erroneous or incomplete and these techniques often produce mosaic founder animals. Thus, newly generated alleles must be verified at the sequence level across the targeted locus. Screening for the presence of the desired mutant allele using traditional sequencing methods can be challenging due to the size of the interval to be sequenced, together with the mosaic nature of founders. METHODOLOGY/PRINCIPAL FINDINGS: In order to help disentangle the genetic complexity of these animals, we tested the application of Oxford Nanopore Technologies long-read sequencing at the targeted locus and found that the achievable depth of sequencing is sufficient to offset the sequencing error rate associated with the technology used to validate targeted regions of interest. We have assembled an analysis workflow that facilitates interrogating the entire length of a targeted segment in a single read, to confirm that the intended mutant sequence is present in both heterozygous animals and mosaic founders. We used this workflow to compare the output of PCR-based and Cas9 capture-based targeted sequencing for validation of edited alleles. CONCLUSION: Targeted long-read sequencing supports in-depth characterisation of all experimental models that aim to produce knock-in or conditional alleles, including those that contain a mix of genome-edited alleles. PCR- or Cas9 capture-based modalities bring different advantages to the analysis.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Animales , Sistemas CRISPR-Cas/genética , Alelos , Edición Génica/métodos , Reparación del ADN por Recombinación , Reacción en Cadena de la Polimerasa
2.
PLoS Genet ; 19(10): e1010961, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37856383

RESUMEN

Imprinted genes are subject to germline epigenetic modification resulting in parental-specific allelic silencing. Although genomic imprinting is thought to be important for maternal behaviour, this idea is based on serendipitous findings from a small number of imprinted genes. Here, we undertook an unbiased systems biology approach, taking advantage of the recent delineation of specific neuronal populations responsible for controlling parental care, to test whether imprinted genes significantly converge to regulate parenting behaviour. Using single-cell RNA sequencing datasets, we identified a specific enrichment of imprinted gene expression in a recognised "parenting hub", the galanin-expressing neurons of the preoptic area. We tested the validity of linking enriched expression in these neurons to function by focusing on MAGE family member L2 (Magel2), an imprinted gene not previously linked to parenting behaviour. We confirmed expression of Magel2 in the preoptic area galanin expressing neurons. We then examined the parenting behaviour of Magel2-null(+/p) mice. Magel2-null mothers, fathers and virgin females demonstrated deficits in pup retrieval, nest building and pup-directed motivation, identifying a central role for this gene in parenting. Finally, we show that Magel2-null mothers and fathers have a significant reduction in POA galanin expressing cells, which in turn contributes to a reduced c-Fos response in the POA upon exposure to pups. Our findings identify a novel imprinted gene that impacts parenting behaviour and, moreover, demonstrates the utility of using single-cell RNA sequencing data to predict gene function from expression and in doing so here, have identified a purposeful role for genomic imprinting in mediating parental behaviour.


Asunto(s)
Galanina , Responsabilidad Parental , Femenino , Animales , Ratones , Galanina/genética , Galanina/metabolismo , Hipotálamo/metabolismo , Impresión Genómica/genética , Fenotipo , Antígenos de Neoplasias/genética , Proteínas/genética
3.
J Immunol ; 204(9): 2455-2463, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32213565

RESUMEN

Cattle possess the most diverse repertoire of NK cell receptor genes among all mammals studied to date. Killer cell receptor genes encoded within the NK complex and killer cell Ig-like receptor genes encoded within the leukocyte receptor complex have both been expanded and diversified. Our previous studies identified two divergent and polymorphic KLRA alleles within the NK complex in the Holstein-Friesian breed of dairy cattle. By examining a much larger cohort and other ruminant species, we demonstrate the emergence and fixation of two KLRA allele lineages (KLRA*01 and -*02) at a single locus during ruminant speciation. Subsequent recombination events between these allele lineages have increased the frequency of KLRA*02 extracellular domains. KLRA*01 and KLRA*02 transcription levels contrasted in response to cytokine stimulation, whereas homozygous animals consistently transcribed higher levels of KLRA, regardless of the allele lineage. KLRA*02 mRNA levels were also generally higher than KLRA*01 Collectively, these data point toward alternative functional roles governed by KLRA genotype and allele lineage. On a background of high genetic diversity of NK cell receptor genes, this KLRA allele fixation points to fundamental and potentially differential function roles.


Asunto(s)
Subfamilia A de Receptores Similares a Lectina de Células NK/genética , Rumiantes/genética , Transcripción Genética/genética , Alelos , Animales , Bovinos , Frecuencia de los Genes/genética , Frecuencia de los Genes/inmunología , Genotipo , Células Asesinas Naturales/inmunología , Subfamilia A de Receptores Similares a Lectina de Células NK/inmunología , ARN Mensajero/genética , ARN Mensajero/inmunología , Rumiantes/inmunología , Transcripción Genética/inmunología
4.
Nucleic Acids Res ; 47(14): 7402-7417, 2019 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-31127293

RESUMEN

The CRISPR system is widely used in genome editing for biomedical research. Here, using either dual paired Cas9D10A nickases or paired Cas9 nuclease we characterize unintended larger deletions at on-target sites that frequently evade common genotyping practices. We found that unintended larger deletions are prevalent at multiple distinct loci on different chromosomes, in cultured cells and mouse embryos alike. We observed a high frequency of microhomologies at larger deletion breakpoint junctions, suggesting the involvement of microhomology-mediated end joining in their generation. In populations of edited cells, the distribution of larger deletion sizes is dependent on proximity to sgRNAs and cannot be predicted by microhomology sequences alone.


Asunto(s)
Sistemas CRISPR-Cas , Deleción Cromosómica , Cromosomas de los Mamíferos/genética , Edición Génica/métodos , Eliminación de Secuencia , Animales , Línea Celular , Puntos de Rotura del Cromosoma , Cromosomas de los Mamíferos/metabolismo , Reparación del ADN por Unión de Extremidades , Desoxirribonucleasa I/genética , Desoxirribonucleasa I/metabolismo , Endonucleasas/genética , Endonucleasas/metabolismo , Ratones , Modelos Genéticos , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/metabolismo
5.
BMC Biol ; 16(1): 70, 2018 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-29925374

RESUMEN

BACKGROUND: Recent advances in clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) genome editing have led to the use of long single-stranded DNA (lssDNA) molecules for generating conditional mutations. However, there is still limited available data on the efficiency and reliability of this method. RESULTS: We generated conditional mouse alleles using lssDNA donor templates and performed extensive characterization of the resulting mutations. We observed that the use of lssDNA molecules as donors efficiently yielded founders bearing the conditional allele, with seven out of nine projects giving rise to modified alleles. However, rearranged alleles including nucleotide changes, indels, local rearrangements and additional integrations were also frequently generated by this method. Specifically, we found that alleles containing unexpected point mutations were found in three of the nine projects analyzed. Alleles originating from illegitimate repairs or partial integration of the donor were detected in eight projects. Furthermore, additional integrations of donor molecules were identified in four out of the seven projects analyzed by copy counting. This highlighted the requirement for a thorough allele validation by polymerase chain reaction, sequencing and copy counting of the mice generated through this method. We also demonstrated the feasibility of using lssDNA donors to generate thus far problematic point mutations distant from active CRISPR cutting sites by targeting two distinct genes (Gckr and Rims1). We propose a strategy to perform extensive quality control and validation of both types of mouse models generated using lssDNA donors. CONCLUSION: lssDNA donors reproducibly generate conditional alleles and can be used to introduce point mutations away from CRISPR/Cas9 cutting sites in mice. However, our work demonstrates that thorough quality control of new models is essential prior to reliably experimenting with mice generated by this method. These advances in genome editing techniques shift the challenge of mutagenesis from generation to the validation of new mutant models.


Asunto(s)
ADN de Cadena Simple , Edición Génica/métodos , Marcación de Gen , Ratones/genética , Alelos , Animales , Sistemas CRISPR-Cas , Mutación , Reproducibilidad de los Resultados
6.
J Immunol ; 195(5): 2199-206, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26216890

RESUMEN

Primate and rodent NK cells form highly heterogeneous lymphocyte populations owing to the differential expression of germline-encoded receptors. Many of these receptors are polymorphic and recognize equally polymorphic determinants of MHC class I. This diversity can lead to individuals carrying NK cells with different specificities. Cattle have an unusually diverse repertoire of NK cell receptor genes predicted to encode receptors that recognize MHC class I. To begin to examine whether this genetic diversity leads to a diverse NK cell population, we isolated peripheral NK cells from cattle with different MHC homozygous genotypes. Cytokine stimulation differentially influenced the transcription of five receptors at the cell population level. Using dilution cultures, we found that a further seven receptors were differentially transcribed, including five predicted to recognize MHC class I. Moreover, there was a statistically significant reduction in killer cell lectin-like receptor mRNA expression between cultures with different CD2 phenotypes and from animals with different MHC class I haplotypes. This finding confirms that cattle NK cells are a heterogeneous population and reveals that the receptors creating this diversity are influenced by the MHC. The importance of this heterogeneity will become clear as we learn more about the role of NK cells in cattle disease resistance and vaccination.


Asunto(s)
Genes MHC Clase I/inmunología , Variación Genética/inmunología , Células Asesinas Naturales/inmunología , Receptores de Células Asesinas Naturales/inmunología , Animales , Antígenos CD2/genética , Antígenos CD2/inmunología , Antígenos CD2/metabolismo , Antígenos CD8/genética , Antígenos CD8/inmunología , Antígenos CD8/metabolismo , Bovinos , Células Cultivadas , Citometría de Flujo , Genes MHC Clase I/genética , Genotipo , Células Asesinas Naturales/metabolismo , Receptor 1 Gatillante de la Citotoxidad Natural/genética , Receptor 1 Gatillante de la Citotoxidad Natural/inmunología , Receptor 1 Gatillante de la Citotoxidad Natural/metabolismo , Receptores Similares a Lectina de Células NK/genética , Receptores Similares a Lectina de Células NK/inmunología , Receptores Similares a Lectina de Células NK/metabolismo , Receptores de Células Asesinas Naturales/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transcriptoma/inmunología
7.
J Immunol ; 192(8): 3868-80, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24639352

RESUMEN

The NKp46 receptor demonstrates a high degree of lineage specificity, being expressed almost exclusively in NK cells. Previous studies have demonstrated NKp46 expression by T cells, but NKp46+ CD3+ cells are rare and almost universally associated with NKp46 acquisition by T cells following stimulation. In this study we demonstrate the existence of a population of NKp46+ CD3+ cells resident in normal bovine PBMCs that includes cells of both the αß TCR+ and γδ TCR+ lineages and is present at a frequency of 0.1-1.7%. NKp46+ CD3+ cells express transcripts for a broad repertoire of both NKRs and TCRs and also the CD3ζ, DAP10, and FcεR1γ but not DAP12 adaptor proteins. In vitro functional analysis of NKp46+ CD3+ cells confirm that NKp46, CD16, and CD3 signaling pathways are all functionally competent and capable of mediating/redirecting cytolysis. However, only CD3 cross-ligation elicits IFN-γ release. NKp46+ CD3+ cells exhibit cytotoxic activity against autologous Theileria parva-infected cells in vitro, and during in vivo challenge with this parasite an expansion of NKp46+ CD3+ cells was observed in some animals, indicating the cells have the potential to act as an anti-pathogen effector population. The results in this study identify and describe a novel nonconventional NKp46+ CD3+ T cell subset that is phenotypically and functionally distinct from conventional NK and T cells. The ability to exploit both NKRs and TCRs suggests these cells may fill a functional niche at the interface of innate and adaptive immune responses.


Asunto(s)
Complejo CD3/metabolismo , Receptor 1 Gatillante de la Citotoxidad Natural/metabolismo , Fenotipo , Subgrupos de Linfocitos T/metabolismo , Animales , Complejo CD3/genética , Bovinos , Enfermedades de los Bovinos/inmunología , Enfermedades de los Bovinos/parasitología , Citotoxicidad Inmunológica , Expresión Génica , Inmunofenotipificación , Interferón gamma/biosíntesis , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Receptor 1 Gatillante de la Citotoxidad Natural/genética , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores de Células Asesinas Naturales/genética , Receptores de Células Asesinas Naturales/metabolismo , Transducción de Señal , Subgrupos de Linfocitos T/inmunología , Theileria/inmunología , Theileriosis/genética , Theileriosis/inmunología , Theileriosis/metabolismo
8.
Methods Mol Biol ; 2631: 103-134, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36995665

RESUMEN

Targeted nucleases allow the production of many types of genetic mutations directly in the early embryo. However, the outcome of their activity is a repair event of unpredictable nature, and the founder animals that are produced are generally of a mosaic nature. Here, we present the molecular assays and genotyping strategies that will support the screening of the first generation for potential founders and the validation of positive animals in the subsequent generation, according to the type of mutation generated.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Animales , Genotipo , Mutación , Genoma
9.
Biofabrication ; 12(1): 015018, 2019 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-31715591

RESUMEN

Adipose models have been applied to mechanistic studies of metabolic diseases (such as diabetes) and the subsequent discovery of new therapeutics. However, typical models are either insufficiently complex (2D cell cultures) or expensive and labor intensive (mice/in vivo). To bridge the gap between these models and in order to better inform pre-clinical studies we have developed a drug-responsive 3D model of white adipose tissue (WAT). Here, spheroids (680 ± 60 µm) comprising adipogenic 3T3-L1 cells encapsulated in 3D matrix were fabricated manually on a 96 well scale. Spheroids were highly characterised for lipid morphology, selected metabolite and adipokine secretion, and gene expression; displaying significant upregulation of certain adipogenic-specific genes compared with a 2D model. Furthermore, induction of lipolysis and promotion of lipogenesis in spheroids could be triggered by exposure to 8-br-cAMP and oleic-acid respectively. Metabolic and high content imaging data of spheroids exposed to an adipose-targeting drug, rosiglitazone, resulted in dose-responsive behavior. Thus, our 3D WAT model has potential as a powerful scalable tool for compound screening and for investigating adipose biology.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Células 3T3-L1 , Adipocitos/citología , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Adipoquinas/metabolismo , Tejido Adiposo/citología , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/metabolismo , Animales , Evaluación Preclínica de Medicamentos/instrumentación , Ratones , Rosiglitazona/farmacología , Esferoides Celulares/citología , Esferoides Celulares/efectos de los fármacos , Esferoides Celulares/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA