Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Org Chem ; 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38901003

RESUMEN

In this report, we demonstrate olefin transposition/isomerization reactions catalyzed by a series of N,N,N-pincer (1,3-bis(2-pyridylimino)isoindoline) Ru-hydride complexes. The protocol proceeds at room temperature for most substrates, achieving excellent yields, regioselectivity, and diastereoselectivity in short reaction times. The air-stable Ru-chloride derivatives of these complexes exhibit comparable reactivity enabling benchtop setup and synthetic versatility. Furthermore, we demonstrate the potential for one-pot cascade sequences of the products derived from the transposition reactions.

2.
Chem Rev ; 122(2): 2695-2751, 2022 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-34672526

RESUMEN

Radical aryl migrations are powerful techniques to forge new bonds in aromatic compounds. The growing popularity of photoredox catalysis has led to an influx of novel strategies to initiate and control aryl migration starting from widely available radical precursors. This review encapsulates progress in radical aryl migration enabled by photochemical methods─particularly photoredox catalysis─since 2015. Special attention is paid to descriptions of scope, mechanism, and synthetic applications of each method.


Asunto(s)
Electrones , Catálisis , Transporte de Electrón , Oxidación-Reducción
3.
ACS Catal ; 12(14): 8511-8526, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-36312445

RESUMEN

Alkene aminoarylation with arylsulfonylacetamides via a visible-light mediated radical Smiles-Truce rearrangement represents a convenient approach to the privileged arylethylamine pharmacaphore traditionally generated by circuitous, multi-step sequences. Herein, we report detailed synthetic, spectroscopic, kinetic, and computational studies designed to interrogate the proposed mechanism, including the key aryl transfer event. The data are consistent with a rate-limiting 1,4-aryl migration occurring either via a stepwise process involving a radical Meisenheimer-like intermediate or in a concerted fashion dependent on both arene electronics and alkene sterics. Our efforts to probe the mechanism have significantly expanded the substrate scope of the transformation with respect to the migrating aryl group and provide further credence to the synthetic potential of radical aryl migrations.

4.
Nat Commun ; 11(1): 6202, 2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-33273454

RESUMEN

The implementation of continuous flow technology is critical towards enhancing the application of photochemical reactions for industrial process development. However, there are significant time and resource constraints associated with translating discovery scale vial-based batch reactions to continuous flow scale-up conditions. Herein we report the development of a droplet microfluidic platform, which enables high-throughput reaction discovery in flow to generate pharmaceutically relevant compound libraries. This platform allows for enhanced material efficiency, as reactions can be performed on picomole scale. Furthermore, high-throughput data collection via on-line ESI mass spectrometry facilitates the rapid analysis of individual, nanoliter-sized reaction droplets at acquisition rates of 0.3 samples/s. We envision this high-throughput screening platform to expand upon the robust capabilities and impact of photochemical reactions in drug discovery and development.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Microfluídica/métodos , Procesos Fotoquímicos , Alquenos/química , Indicadores y Reactivos , Metilación , Reproducibilidad de los Resultados , Espectrometría de Masa por Ionización de Electrospray
5.
ACS Catal ; 9(1): 746-754, 2019 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-31304049

RESUMEN

The heterodifunctionalization of alkenes is an efficient method for synthesizing highly functionalized organic molecules. In this report, we describe the use of anodically coupled electrolysis for the catalytic chloroalkylation of alkenes-a reaction that constructs vicinal C-C and C-Cl bonds in a single synthetic operation-from malononitriles or cyanoacetates and NaCl. Knowledge of the persistent radical effect guided the reaction design and development. A series of controlled experiments, including divided-cell electrolysis that compartmentalized the anodic and cathodic events, allowed us to identify the key radical intermediates and the pathway to their electrocatalytic formation. Cyclic voltammetry data further support the proposed mechanism entailing the parallel, Mn-mediated generation of two radical intermediates in an anodically coupled electrolysis followed by their selective addition to the alkene.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA