Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Curr Biol ; 33(20): 4285-4297.e5, 2023 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-37734374

RESUMEN

What limits the size of nature's most extreme structures? For weapons like beetle horns, one possibility is a tradeoff associated with mechanical levers: as the output arm of the lever system-the beetle horn-gets longer, it also gets weaker. This "paradox of the weakening combatant" could offset reproductive advantages of additional increases in weapon size. However, in contemporary populations of most heavily weaponed species, males with the longest weapons also tend to be the strongest, presumably because selection drove the evolution of compensatory changes to these lever systems that ameliorated the force reductions of increased weapon size. Therefore, we test for biomechanical limits by reconstructing the stages of weapon evolution, exploring whether initial increases in weapon length first led to reductions in weapon force generation that were later ameliorated through the evolution of mechanisms of mechanical compensation. We describe phylogeographic relationships among populations of a rhinoceros beetle and show that the "pitchfork" shaped head horn likely increased in length independently in the northern and southern radiations of beetles. Both increases in horn length were associated with dramatic reductions to horn lifting strength-compelling evidence for the paradox of the weakening combatant-and these initial reductions to horn strength were later ameliorated in some populations through reductions to horn length or through increases in head height (the input arm for the horn lever system). Our results reveal an exciting geographic mosaic of weapon size, weapon force, and mechanical compensation, shedding light on larger questions pertaining to the evolution of extreme structures.


Asunto(s)
Evolución Biológica , Escarabajos , Cuernos , Animales , Masculino , Fenómenos Biomecánicos/fisiología , Escarabajos/anatomía & histología , Escarabajos/crecimiento & desarrollo , Escarabajos/fisiología , Cuernos/anatomía & histología , Cuernos/crecimiento & desarrollo , Cuernos/fisiología , Elevación , Caracteres Sexuales , Japón
2.
Ecol Lett ; 15(5): 415-24, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22390373

RESUMEN

Although olfaction is a primary mode of communication, its importance in sexual selection remains understudied. Here, using the butterfly Bicyclus anynana, we address all the parameters of importance to sexual selection for a male olfactory signal. We show that variation in the male sex pheromone composition indicates male identity and male age. Courting males of different ages display small absolute (c. 200 ng) but large relative (100%) change of one specific pheromone component (hexadecanal) which, unlike the other components, showed no heritability. Females prefer to mate with mid-aged over younger males and the pheromone composition is sufficient to determine this preference. Surprisingly refined information is thus present in the male olfactory signal and is used for sexual selection. Our data also reveal that there may be no 'lek paradox' to resolve once the precise signal of importance to females is identified, as hexadecanal is, as expected, depleted in additive genetic variation.


Asunto(s)
Mariposas Diurnas/fisiología , Preferencia en el Apareamiento Animal/fisiología , Envejecimiento/fisiología , Animales , Mariposas Diurnas/anatomía & histología , Femenino , Masculino , Feromonas/química , Olfato/fisiología
3.
Annu Rev Entomol ; 56: 445-64, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-20822452

RESUMEN

Among the animals, the Lepidoptera (moths and butterflies) are second only to beetles in number of described species and are known for their striking intra- and interspecific diversity. Within species, sexual dimorphism is a source of variation in life history (e.g., sexual size dimorphism and protandry), morphology (e.g., wing shape and color pattern), and behavior (e.g., chemical and visual signaling). Sexual selection and mating systems have been considered the primary forces driving the evolution of sexual dimorphism in the Lepidoptera, and alternative hypotheses have been neglected. Here, we examine opportunities for sexual selection, natural selection, and the interplay between the two forces in the evolution of sexual differences in the moths and butterflies. Our primary goal is to identify mechanisms that either facilitate or constrain the evolution of sexual dimorphism, rather than to resolve any perceived controversy between hypotheses that may not be mutually exclusive.


Asunto(s)
Evolución Biológica , Lepidópteros/genética , Animales , Femenino , Lepidópteros/anatomía & histología , Lepidópteros/fisiología , Masculino , Caracteres Sexuales
4.
Evolution ; 75(2): 394-413, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33009663

RESUMEN

Exaggerated weapons of sexual selection often diverge more rapidly and dramatically than other body parts, suggesting that relevant agents of selection may be discernible in contemporary populations. We examined the ecology, reproductive behavior, and strength of sexual selection on horn length in five recently diverged rhinoceros beetle (Trypoxylus dichotomus) populations that differ in relative horn size. Males with longer horns were better at winning fights in all locations, but the link between winning fights and mating success differed such that selection favored large males with long horns at the two long-horned populations, but was relaxed or nonexistent at the populations with relatively shorter horns. Observations of local habitat conditions and breeding ecology point to shifts in the relative abundance of feeding territories as the most likely cause of population differences in selection on male weapon size in this species. Comparisons of ecological conditions and selection strength across populations offer critical first steps toward meaningfully linking mating system dynamics, selection patterns, and diversity in sexually selected traits.


Asunto(s)
Escarabajos/anatomía & histología , Caracteres Sexuales , Conducta Sexual Animal , Selección Sexual , Animales , Escarabajos/genética , Femenino , Masculino , Densidad de Población , Territorialidad
5.
BMC Evol Biol ; 8: 94, 2008 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-18366752

RESUMEN

BACKGROUND: There is spectacular morphological diversity in nature but lineages typically display a limited range of phenotypes. Because developmental processes generate the phenotypic variation that fuels natural selection, they are a likely source of evolutionary biases, facilitating some changes and limiting others. Although shifts in developmental regulation are associated with morphological differences between taxa, it is unclear how underlying mechanisms affect the rate and direction of evolutionary change within populations under selection. Here we focus on two ecologically relevant features of butterfly wing color patterns, eyespot size and color composition, which are similarly and strongly correlated across the serially repeated eyespots. Though these two characters show similar patterns of standing variation and covariation within a population, they differ in key features of their underlying development. We targeted pairs of eyespots with artificial selection for coordinated (concerted selection) versus independent (antagonistic selection) change in their color composition and size and compared evolutionary responses of the two color pattern characters. RESULTS: The two characters respond to selection in strikingly different ways despite initially similar patterns of variation in all directions present in the starting population. Size (determined by local properties of a diffusing inductive signal) evolves flexibly in all selected directions. However, color composition (determined by a tissue-level response to the signal concentration gradient) evolves only in the direction of coordinated change. There was no independent evolutionary change in the color composition of two eyespots in response to antagonistic selection. Moreover, these differences in the directions of short-term evolutionary change in eyespot size and color composition within a single species are consistent with the observed wing pattern diversity in the genus. CONCLUSION: Both characters respond rapidly to selection for coordinated change, but there are striking differences in their response to selection for antagonistic, independent change across eyespots. While many additional factors may contribute to both short- and long-term evolutionary response, we argue that the compartmentalization of developmental processes can influence the diversification of serial repeats such as butterfly eyespots, even under strong selection.


Asunto(s)
Evolución Biológica , Mariposas Diurnas/genética , Variación Genética , Pigmentación/genética , Selección Genética , Animales , Mariposas Diurnas/anatomía & histología , Mariposas Diurnas/fisiología , Genes de Insecto , Alas de Animales/anatomía & histología
6.
J Exp Zool B Mol Dev Evol ; 310(2): 179-90, 2008 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-17631653

RESUMEN

Organisms are inherently modular, yet modules also evolve in response to selection for functional integration or functional specialization of traits. For serially repeated homologous traits, there is a clear expectation that selection on the function of individual traits will reduce the integration between traits and subdivide a single ancestral module. The eyespots on butterfly wings are one example of serially repeated morphological traits that share a common developmental mechanism but are subject to natural and sexual selection for divergent functions. Here, I test two hypotheses about the organization of the eyespot pattern into independent dorsal-ventral and anterior-posterior modules, using a graphical modeling technique to examine patterns of eyespot covariation among and within wing surfaces in the butterfly Bicyclus anynana. Although there is a hierarchical and complex pattern of integration among eyespots, the results show a surprising mismatch between patterns of eyespot integration and the developmental and evolutionary eyespot units identified in previous empirical studies. These results are discussed in light of the relationships between developmental, functional, and evolutionary modules, and they suggest that developmental sources of independent trait variation are often masked by developmental sources of trait integration.


Asunto(s)
Tipificación del Cuerpo , Mariposas Diurnas/fisiología , Alas de Animales/fisiología , Animales , Evolución Biológica , Mariposas Diurnas/anatomía & histología , Mariposas Diurnas/genética , Femenino , Modelos Biológicos , Alas de Animales/anatomía & histología
7.
Sci Rep ; 8(1): 14315, 2018 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-30254273

RESUMEN

Phenotypic variation is the raw material for selection that is ubiquitous for most traits in natural populations, yet the processes underlying phenotypic evolution or stasis often remain unclear. Here, we report phenotypic evolution in a mutant line of the butterfly Bicyclus anynana after outcrossing with the genetically polymorphic wild type population. The comet mutation modifies two phenotypic traits known to be under sexual selection in this butterfly: the dorsal forewing eyespots and the pheromone-producing structures. The original comet mutant line was inbred and remained phenotypically stable for at least seven years, but when outcrossed to the wild type population the outcrossed comet line surprisingly recovered the wild type phenotype within 8 generations at high (27 °C), but not at low (20 °C), developmental temperatures. Male mating success experiments then revealed that outcrossed comet males with the typical comet phenotype suffered from lower mating success, while mating success of outcrossed comet males resembling wild types was partially restored. We document a fortuitous case where the addition of genetic polymorphism around a spontaneous mutation could have allowed partial restoration of phenotypic robustness. We further argue that sexual selection through mate choice is likely the driving force leading to phenotypic robustness in our system.


Asunto(s)
Mariposas Diurnas/genética , Mariposas Diurnas/fisiología , Fenotipo , Selección Genética , Conducta Sexual Animal , Animales , Mariposas Diurnas/metabolismo , Evolución Molecular , Femenino , Proteínas de Insectos/genética , Masculino , Mutación , Atractivos Sexuales/metabolismo
8.
Integr Comp Biol ; 43(5): 617-34, 2003 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21680471

RESUMEN

For almost a century, biologists have used trait scaling relationships (bi-variate scatter-plots of trait size versus body size) to characterize phenotypic variation within populations, and to compare animal shape across populations or species. Scaling relationships are a popular metric because they have long been thought to reflect underlying patterns of trait growth and development. However, the physiological mechanisms generating animal scaling are not well understood, and it is not yet clear how scaling relationships evolve. Here we review recent advances in developmental biology, genetics, and physiology as they pertain to the control of growth of adult body parts in insects. We summarize four mechanisms known to influence either the rate or the duration of cell proliferation within developing structures, and suggest how mutations in these mechanisms could affect the relative sizes of adult body parts. By reviewing what is known about these four processes, and illustrating how they may contribute to patterns of trait scaling, we reveal genetic mechanisms likely to be involved in the evolution of insect form.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA