Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Inorg Chem ; 57(2): 754-767, 2018 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-29266938

RESUMEN

Recrystallization of amorphous compounds can lead to the stabilization of metastable crystalline phases, which offers an interesting way to unveil novel binary or ternary compounds and control the transport properties of the obtained glass ceramics. Here, we report on a systematic study of the Cu-As-Te glassy system and show that under specific synthesis conditions using the spark-plasma-sintering technique, the α-As2Te3 and ß-As2Te3 binary phases and the previously unreported AsTe3 phase can be selectively crystallized within an amorphous matrix. The microstructures and transport properties of three different glass ceramics, each of them containing one of these phases with roughly the same crystalline fraction (∼30% in volume), were investigated in detail by means of X-ray diffraction, scanning electron microscopy, neutron thermodiffraction, Raman scattering (experimental and lattice-dynamics calculations), and transport-property measurements. The physical properties of the glass ceramics are compared with those of both the parent glasses and the pure crystalline phases that could be successfully synthesized. SEM images coupled with Raman spectroscopy evidence a "coast-to-island" or dendriticlike microstructure with microsized crystallites. The presence of the crystallized phase results in a significant decrease in the electrical resistivity while maintaining the thermal conductivity to low values. This study demonstrates that new compounds with interesting transport properties can be obtained by recrystallization, which in turn provides a tuning parameter for the transport properties of the parent glasses.

2.
Inorg Chem ; 56(19): 11591-11602, 2017 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-28892366

RESUMEN

We report for the first time the full crystal structure, the electronic structure, the lattice dynamics, and the elastic constants of metastable monoclinic AlGe. In addition to ultrarapid cooling techniques such as melt spinning, we show the possibility of obtaining monoclinic AlGe by water-quenching in a quartz tube. Monoclinic AlGe and rhombohedral Al6Ge5 are competing phases with similar stability since they both begin to decompose above 230 °C. The crystal structure and electronic bonding of monoclinic AlGe are similar to those of ZnSb and comply with its 3.5 valence electrons per atom: besides classical two electron-two center Al-Ge and Ge-Ge covalent bonds, Al2Ge2 parallelogram rings are formed by uncommon multicenter bonds. Monoclinic AlGe could be used in various applications since it is found theoretically to be an electron-poor semiconductor with a narrow indirect energy bandgap of about 0.5 eV. The lattice dynamics calculations show the presence of low energy optical phonons, which should lead to a low thermal conductivity.

3.
Inorg Chem ; 56(4): 2248-2257, 2017 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-28177618

RESUMEN

We report on the influence of Se substitution on the electronic band structure and thermoelectric properties (5-523 K) of the solid solution α-As2Te3-xSex (0 ≤ x ≤ 1.5). All of the polycrystalline compounds α-As2Te3-xSex crystallize isostructurally in the monoclinic space group C2/m (No. 12, Z = 4). Regardless of the Se content, chemical analyses performed by scanning electron microscopy and electron probe microanalysis indicate a good chemical homogeneity, with only minute amounts of secondary phases for some compositions. In agreement with electronic band structure calculations, neutron powder diffraction suggests that Se does not randomly substitute for Te but exhibits a site preference. These theoretical calculations further predict a monotonic increase in the band gap energy with the Se content, which is confirmed experimentally by absorption spectroscopy measurements. Increasing x up to x = 1.5 leaves unchanged both the p-type character and semiconducting nature of α-As2Te3. The electrical resistivity and thermopower gradually increase with x as a result of the progressive increase in the band gap energy. Despite the fact that α-As2Te3 exhibits very low lattice thermal conductivity κL, the substitution of Se for Te further lowers κL to 0.35 W m-1 K-1 at 300 K. The compositional dependence of the lattice thermal conductivity closely follows classical models of phonon alloy scattering, indicating that this decrease is due to enhanced point-defect scattering.

4.
Inorg Chem ; 54(20): 9936-47, 2015 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-26418840

RESUMEN

Metastable ß-As2Te3 (R3̅m, a = 4.047 Å and c = 29.492 Å at 300 K) is isostructural to layered Bi2Te3 and is known for similarly displaying good thermoelectric properties around 400 K. Crystallizing glassy-As2Te3 leads to multiphase samples, while ß-As2Te3 could indeed be synthesized with good phase purity (97%) by melt quenching. As expected, ß-As2Te3 reconstructively transforms into stable α-As2Te3 (C2/m, a = 14.337 Å, b = 4.015 Å, c = 9.887 Å, and ß = 95.06°) at 480 K. This ß â†’ α transformation can be seen as the displacement of part of the As atoms from their As2Te3 layers into the van der Waals bonding interspace. Upon cooling, ß-As2Te3 displacively transforms in two steps below T(S1) = 205-210 K and T(S2) = 193-197 K into a new ß'-As2Te3 allotrope. These reversible and first-order phase transitions give rise to anomalies in the resistance and in the calorimetry measurements. The new monoclinic ß'-As2Te3 crystal structure (P2(1)/m, a = 6.982 Å, b = 16.187 Å, c = 10.232 Å, ß = 103.46° at 20 K) was solved from Rietveld refinements of X-ray and neutron powder patterns collected at low temperatures. These analyses showed that the distortion undergone by ß-As2Te3 is accompanied by a 4-fold modulation along its b axis. In agreement with our experimental results, electronic structure calculations indicate that all three structures are semiconducting with the α-phase being the most stable one and the ß'-phase being more stable than the ß-phase. These calculations also confirm the occurrence of a van der Waals interspace between covalently bonded As2Te3 layers in all three structures.

5.
ACS Comb Sci ; 22(12): 813-820, 2020 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-33078940

RESUMEN

High-throughput calculations can be applied to a large number of compounds, in order to discover new useful materials. In the present work, ternary intermetallic compounds are investigated, to find new potentially interesting materials for thermoelectric applications. The screening of stable nonmetallic compounds required for such applications is performed by calculating their electronic structure, using DFT methods. In the first section, the study of the density of states at the Fermi level, of pure elements, binary and ternary compounds, leads to empirically chose the selection criterion to distinguish metals from nonmetals. In the second section, the TiNiSi structure-type is used as a case-study application, through the investigation of 570 possible compositions. The screening leads to the selection of 12 possible semiconductors. The Seebeck coefficient and the lattice thermal conductivity of the selected compounds are calculated in order to identify the most promising ones. Among them, TiNiSi, TaNiP, or HfCoP are shown to be worth a detailed experimental investigation.


Asunto(s)
Níquel/química , Silicio/química , Titanio/química , Teoría Funcional de la Densidad , Evaluación Preclínica de Medicamentos , Semiconductores , Conductividad Térmica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA