Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Opt Express ; 27(4): 5641-5654, 2019 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-30876162

RESUMEN

We report the development and characterisation of highly miniaturised fibre-optic sensors for simultaneous pressure and temperature measurement, and a compact interrogation system with a high sampling rate. The sensors, which have a maximum diameter of 250 µm, are based on multiple low-finesse optical cavities formed from polydimethylsiloxane (PDMS), positioned at the distal ends of optical fibres, and interrogated using phase-resolved low-coherence interferometry. At acquisition rates of 250 Hz, temperature and pressure changes of 0.0021 °C and 0.22 mmHg are detectable. An in vivo experiment demonstrated that the sensors had sufficient speed and sensitivity for monitoring dynamic physiological pressure waveforms. These sensors are ideally suited to various applications in minimally invasive surgery, where diminutive lateral dimensions, high sensitivity and low manufacturing complexities are particularly valuable.


Asunto(s)
Tecnología de Fibra Óptica/instrumentación , Interferometría/métodos , Presión , Temperatura , Diseño de Equipo , Fibras Ópticas , Transductores
2.
Opt Lett ; 44(24): 6005-6008, 2019 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-32628218

RESUMEN

A versatile and scalable fabrication method for laser-generated focused ultrasound transducers is proposed. The method is based on stamping a coated negative mold onto polydimethylsiloxane, and it can be adapted to include different optical absorbers that are directly transferred or synthesized in situ. Transducers with a range of sizes down to 3 mm in diameter are presented, incorporating two carbonaceous (multiwalled carbon nanoparticles and candle soot nanoparticles) and one plasmonic (gold nanoparticles) optically absorbing component. The fabricated transducers operate at central frequencies in the vicinity of 10 MHz with bandwidths in the range of 15-20 MHz. A transducer with a diameter of 5 mm was found to generate a positive peak pressure greater than 35 MPa in the focal zone with a tight focal spot of 150 µm in lateral width. Ultrasound cavitation on the tip of an optical fiber was demonstrated in water for a transducer with a diameter as small as 3 mm.

3.
Appl Phys Lett ; 114(11): 113505, 2019 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-30967687

RESUMEN

Strongly directional ultrasound sources are desirable for many minimally invasive applications, as they enable high-quality imaging in the presence of positioning uncertainty. All-optical ultrasound is an emerging paradigm that exhibits high frequencies, large bandwidths, and a strong miniaturisation potential. Here, we report the design, modelling, and fabrication of a highly directional fibre-optic ultrasound transmitter that uses a composite of reduced graphene oxide and polydimethylsiloxane as the optical ultrasound generator. The ultrasound transmitter, which had an outer diameter of just 630 µm, generated ultrasound with a pressure exceeding 0.4 MPa for axial distances up to 16 mm, at a large bandwidth of 24.3 MHz. The ultrasound beam exhibited low divergence, with a beam diameter ranging between 0.6 and 2.1 mm for distances between 0 and 16 mm. The presented directional optical ultrasound source is hence well-suited to high-resolution interventional imaging.

4.
Ultrason Imaging ; 34(4): 237-60, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23160476

RESUMEN

The fast nearfield method, when combined with time-space decomposition, is a rapid and accurate approach for calculating transient nearfield pressures generated by ultrasound transducers. However, the standard time-space decomposition approach is only applicable to certain analytical representations of the temporal transducer surface velocity that, when applied to the fast nearfield method, are expressed as a finite sum of products of separate temporal and spatial terms. To extend time-space decomposition such that accelerated transient field simulations are enabled in the nearfield for an arbitrary transducer surface velocity, a new transient simulation method, frequency-domain time-space decomposition (FDTSD), is derived. With this method, the temporal transducer surface velocity is transformed into the frequency domain, and then each complex-valued term is processed separately. Further improvements are achieved by spectral clipping, which reduces the number of terms and the computation time. Trade-offs between speed and accuracy are established for FDTSD calculations, and pressure fields obtained with the FDTSD method for a circular transducer are compared with those obtained with Field II and the impulse response method. The FDTSD approach, when combined with the fast nearfield method and spectral clipping, consistently achieves smaller errors in less time and requires less memory than Field II or the impulse response method.


Asunto(s)
Simulación por Computador , Procesamiento de Señales Asistido por Computador , Transductores , Acústica , Presión , Reproducibilidad de los Resultados , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA