Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Am J Transplant ; 21(8): 2688-2697, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33370494

RESUMEN

Uninephrectomy (UNx) in living kidney donors for transplantation is now routine clinical practice. While chronic kidney disease, due to bilateral kidney dysfunction, is associated with insulin resistance, liver steatosis, and type 2 diabetes, the metabolic impact of UNx remains unclear. To better understand the crosstalk between the kidney and insulin target tissues, we studied the metabolic consequences of UNx and the potential involvement of class II PI3K-C2ß, the inactivation of which has been reported to result in insulin sensitization. Mice underwent UNx or sham operation followed by either normal chow or high-fat diet (HFD). Seventeen weeks post-UNx, mice showed improved glucose tolerance, insulin sensitivity, and decreased HFD-induced liver steatosis. This was associated with an enhanced serum FGF21 and insulin-stimulated Akt signaling in the liver and muscle of both lean and obese mice. Remarkably, the combination of UNx and PI3K-C2ß inactivation protected against HFD-induced obesity and further potentiated the metabolic improvement observed in WT UNx mice correlating with a synergistic increase in metabolic tissues of (1) insulin-stimulated Akt signaling (2) FGFR1 and ßKlotho expression. We demonstrated a potential beneficial effect of kidney donation and more effectively with PI3K-C2ß inactivation to protect against metabolic disorders through a mutual insulin/FGF21 sensitization.


Asunto(s)
Fosfatidilinositol 3-Quinasas Clase II/genética , Diabetes Mellitus Tipo 2 , Hígado Graso , Resistencia a la Insulina , Animales , Diabetes Mellitus Tipo 2/etiología , Hígado Graso/etiología , Hígado Graso/prevención & control , Insulina , Hígado , Ratones , Ratones Endogámicos C57BL , Obesidad/etiología
2.
BMC Nephrol ; 19(1): 346, 2018 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-30509210

RESUMEN

BACKGROUND: The end stage renal disease population has a 20 fold higher incidence of cardiovascular mortality compared to the overall population. The development of reno-cardiac syndrome in these patients will result in cardiovascular events to be the cause of 50% of fatalities. There is therefore a need to research improved therapeutic strategies to combat renal cardiac pathologies. Murine in vivo models contribute greatly to such research allowing for specific genetic modification and reduced miscellany, however there is currently no reliable model of reno-cardiac syndrome in the most common genetically modified mouse strain, the C57BL/6. In this study we have manipulated an established model of chronic renal disease using adenine infused diet and prolonged the course of its pathology achieving chronic renal failure and subsequent reno-cardiac syndrome in the C57BL/6 mouse. METHODS: Eight week-old male C57BL/ 6 mice were acclimatised for 7 days before administration of a 0.15% adenine diet or control diet for 20 weeks. Cardiac function was assessed in mice at week 20 by echocardiography. At experiment termination blood and urine samples were analysed biochemically and organ dysfunction/injury was determined using immunoblotting and immunohistochemistry. RESULTS: Administration of 0.15% adenine diet caused progressive renal failure resulting in reno-cardiac syndrome. At endpoint uraemia was confirmed by blood biochemistry which in the adenine fed mice showed significant increases in serum creatinine, urea, calcium (P < 0.0001) potassium (P < 0.05), and a significantly reduced glomerular filtration rate (P < 0.05). Reno-cardiac syndrome was confirmed by a significantly increased heart to body weight ratio (P < 0.0001) and echocardiography which showed significant reductions in percentage of ejection fraction, fractional shortening, fractional area change, (P < 0.0001) and an increase in left ventricular end diastolic volume (P < 0.05). Immunoblotting of kidney and heart tissue showed increased apoptosis (caspase 3) and fibrosis (fibronectin) and increases in the cardiac levels of phosphorylated Akt, and renal total Akt. Immunohistochemistry for α-SMA, collagen 1 and collagen 3 further confirmed fibrosis. CONCLUSIONS: We present a novel regimen of adenine diet which induces both chronic kidney disease and reno-cardiac syndrome in the C57/BL6 mouse strain. The non-surgical nature of this model makes it highly reproducible compared to other models currently available.


Asunto(s)
Adenina/toxicidad , Síndrome Cardiorrenal/diagnóstico por imagen , Síndrome Cardiorrenal/fisiopatología , Modelos Animales de Enfermedad , Adenina/administración & dosificación , Animales , Síndrome Cardiorrenal/inducido químicamente , Masculino , Ratones , Ratones Endogámicos C57BL , Distribución Aleatoria
3.
Diabetologia ; 59(7): 1503-1512, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27138914

RESUMEN

AIMS/HYPOTHESIS: While the class I phosphoinositide 3-kinases (PI3Ks) are well-documented positive regulators of metabolism, the involvement of class II PI3K isoforms (PI3K-C2α, -C2ß and -C2γ) in metabolic regulation is just emerging. Organismal inactivation of PI3K-C2ß increases insulin signalling and sensitivity, whereas PI3K-C2γ inactivation has a negative metabolic impact. In contrast, the role of PI3K-C2α in organismal metabolism remains unexplored. In this study, we investigated whether kinase inactivation of PI3K-C2α affects glucose metabolism in mice. METHODS: We have generated and characterised a mouse line with a constitutive inactivating knock-in (KI) mutation in the kinase domain of the gene encoding PI3K-C2α (Pik3c2a). RESULTS: While homozygosity for kinase-dead PI3K-C2α was embryonic lethal, heterozygous PI3K-C2α KI mice were viable and fertile, with no significant histopathological findings. However, male heterozygous mice showed early onset leptin resistance, with a defect in leptin signalling in the hypothalamus, correlating with a mild, age-dependent obesity, insulin resistance and glucose intolerance. Insulin signalling was unaffected in insulin target tissues of PI3K-C2α KI mice, in contrast to previous reports in which downregulation of PI3K-C2α in cell lines was shown to dampen insulin signalling. Interestingly, no metabolic phenotypes were detected in female PI3K-C2α KI mice at any age. CONCLUSIONS/INTERPRETATION: Our data uncover a sex-dependent role for PI3K-C2α in the modulation of hypothalamic leptin action and systemic glucose homeostasis. ACCESS TO RESEARCH MATERIALS: All reagents are available upon request.


Asunto(s)
Resistencia a la Insulina/fisiología , Leptina/metabolismo , Obesidad/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Adipocitos/metabolismo , Animales , Western Blotting , Línea Celular , Ingestión de Alimentos/genética , Ingestión de Alimentos/fisiología , Glucosa/metabolismo , Homeostasis/genética , Homeostasis/fisiología , Hipotálamo/metabolismo , Insulina/metabolismo , Resistencia a la Insulina/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/genética , Fosfatidilinositol 3-Quinasas/genética , Transducción de Señal/genética , Transducción de Señal/fisiología
4.
Dev Cell ; 57(14): 1694-1711.e7, 2022 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-35809565

RESUMEN

Focal adhesions are multifunctional organelles that couple cell-matrix adhesion to cytoskeletal force transmission and signaling and to steer cell migration and collective cell behavior. Whereas proteomic changes at focal adhesions are well understood, little is known about signaling lipids in focal adhesion dynamics. Through the characterization of cells from mice with a kinase-inactivating point mutation in the class II PI3K-C2ß, we find that generation of the phosphatidylinositol-3,4-bisphosphate (PtdIns(3,4)P2) membrane lipid promotes focal adhesion disassembly in response to changing environmental conditions. We show that reduced growth factor signaling sensed by protein kinase N, an mTORC2 target and effector of RhoA, synergizes with the adhesion disassembly factor DEPDC1B to induce local synthesis of PtdIns(3,4)P2 by PI3K-C2ß. PtdIns(3,4)P2 then promotes turnover of RhoA-dependent stress fibers by recruiting the PtdIns(3,4)P2-dependent RhoA-GTPase-activating protein ARAP3. Our findings uncover a pathway by which cessation of growth factor signaling facilitates cell-matrix adhesion disassembly via a phosphoinositide lipid switch.


Asunto(s)
Adhesiones Focales , Fosfatidilinositoles , Animales , Adhesión Celular , Adhesiones Focales/metabolismo , Ratones , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilinositoles/metabolismo , Proteómica
5.
J Clin Invest ; 118(11): 3629-38, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18846252

RESUMEN

Factors that promote pancreatic beta cell growth and function are potential therapeutic targets for diabetes mellitus. In mice, genetic experiments suggest that signaling cascades initiated by insulin and IGFs positively regulate beta cell mass and insulin secretion. Akt and S6 kinase (S6K) family members are activated as part of these signaling cascades, but how the interplay between these proteins controls beta cell growth and function has not been determined. Here, we found that although transgenic mice overexpressing the constitutively active form of Akt1 under the rat insulin promoter (RIP-MyrAkt1 mice) had enlarged beta cells and high plasma insulin levels, leading to improved glucose tolerance, a substantial proportion of the mice developed insulinomas later in life, which caused decreased viability. This oncogenic transformation tightly correlated with nuclear exclusion of the tumor suppressor PTEN. To address the role of the mammalian target of rapamycin (mTOR) substrate S6K1 in the MyrAkt1-mediated phenotype, we crossed RIP-MyrAkt1 and S6K1-deficient mice. The resulting mice displayed reduced insulinemia and glycemia compared with RIP-MyrAkt1 mice due to a combined effect of improved insulin secretion and insulin sensitivity. Importantly, although the increase in beta cell size in RIP-MyrAkt1 mice was not affected by S6K1 deficiency, the hyperplastic transformation required S6K1. Our results therefore identify S6K1 as a critical element for MyrAkt1-induced tumor formation and suggest that it may represent a useful target for anticancer therapy downstream of mTOR.


Asunto(s)
Insulinoma/metabolismo , Páncreas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Quinasas S6 Ribosómicas/metabolismo , Animales , Tamaño de la Célula , Cruzamientos Genéticos , Modelos Animales de Enfermedad , Insulina/sangre , Insulina/genética , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Insulinoma/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas c-akt/genética , Ratas , Proteínas Quinasas S6 Ribosómicas/genética
6.
Bio Protoc ; 10(18): e3751, 2020 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-33659410

RESUMEN

Cardiorenal syndrome defines a synergistic pathology of the heart and kidneys where failure of one organ causes failure in the other. The incidence of cardiovascular mortality caused by this syndrome, is 20 fold higher in the end stage renal disease (ESRD) population compared to the population as a whole thus necessitating the need for improved therapeutic strategies to combat reno-cardiac pathologies. Murine in vivo models play a major role in such research permitting precise genetic modification thus reducing miscellany, however presently there is no steadfast model of reno-cardiac syndrome in the most common genetically modified mouse strain, the C57BL/6 mouse. In this study we have modified an established model of chronic renal disease using adenine diet and extended the associated pathology achieving chronic renal failure and consequent reno-cardiac syndrome in the C57BL/6 mouse. Eight week-old male C57BL/6 mice were acclimatized for 7 days before administration of a 0.15% adenine diet or control diet for 20 weeks after which the experiment was terminated and blood, urine and organs were collected and analyzed biochemically and by immunohistochemistry. Administration of 0.15% adenine diet caused progressive renal failure resulting in a reno-cardiac syndrome confirmed by a significantly increased heart to body weight ratio (P < 0.0001). Blood biochemistry showed that adenine fed mice had significantly increased serum creatinine, urea (P < 0.0001), and a significantly reduced glomerular filtration rate (P < 0.05), while immunohistochemistry of the kidneys for α-SMA, collagen 1 and collagen 3 showed severe fibrosis. We present a novel regimen of adenine diet which induces both chronic kidney disease and reno-cardiac syndrome in the C57BL/6 mouse strain. The non-surgical nature of this model makes it highly reproducible compared to other models currently available.

7.
Nat Commun ; 8(1): 1804, 2017 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-29180704

RESUMEN

Vps34 PI3K is thought to be the main producer of phosphatidylinositol-3-monophosphate, a lipid that controls intracellular vesicular trafficking. The organismal impact of systemic inhibition of Vps34 kinase activity is not completely understood. Here we show that heterozygous Vps34 kinase-dead mice are healthy and display a robustly enhanced insulin sensitivity and glucose tolerance, phenotypes mimicked by a selective Vps34 inhibitor in wild-type mice. The underlying mechanism of insulin sensitization is multifactorial and not through the canonical insulin/Akt pathway. Vps34 inhibition alters cellular energy metabolism, activating the AMPK pathway in liver and muscle. In liver, Vps34 inactivation mildly dampens autophagy, limiting substrate availability for mitochondrial respiration and reducing gluconeogenesis. In muscle, Vps34 inactivation triggers a metabolic switch from oxidative phosphorylation towards glycolysis and enhanced glucose uptake. Our study identifies Vps34 as a new drug target for insulin resistance in Type-2 diabetes, in which the unmet therapeutic need remains substantial.


Asunto(s)
Resistencia a la Insulina , Mitocondrias/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal/fisiología , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Autofagia/fisiología , Línea Celular Tumoral , Fosfatidilinositol 3-Quinasas Clase III , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Técnicas de Sustitución del Gen , Glucosa/análisis , Glucosa/metabolismo , Prueba de Tolerancia a la Glucosa , Glucólisis/fisiología , Hepatocitos , Heterocigoto , Humanos , Insulina/metabolismo , Hígado/citología , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Modelos Animales , Músculo Esquelético/citología , Músculo Esquelético/metabolismo , Mioblastos , Fosfatidilinositol 3-Quinasas/genética , Inhibidores de las Quinasa Fosfoinosítidos-3 , Fosforilación , Cultivo Primario de Células
8.
Endocrinology ; 146(1): 103-12, 2005 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15388648

RESUMEN

To delineate the roles of the lactogens and GH in the control of perinatal and postnatal growth, fat deposition, insulin production, and insulin action, we generated a novel mouse model that combines resistance to all lactogenic hormones with a severe deficiency of pituitary GH. The model was created by breeding PRL receptor (PRLR)-deficient (knockout) males with GH-deficient (little) females. In contrast to mice with isolated GH or PRLR deficiencies, double-mutant (lactogen-resistant and GH-deficient) mice on d 7 of life had growth failure and hypoglycemia. These findings suggest that lactogens and GH act in concert to facilitate weight gain and glucose homeostasis during the perinatal period. Plasma insulin and IGF-I and IGF-II concentrations were decreased in both GH-deficient and double-mutant neonates but were normal in PRLR-deficient mice. Body weights of the double mutants were reduced markedly during the first 3-4 months of age, and adults had striking reductions in femur length, plasma IGF-I and IGF binding protein-3 concentrations, and femoral bone mineral density. By age 6-12 months, however, the double-mutant mice developed obesity, hyperleptinemia, fasting hyperglycemia, relative hypoinsulinemia, insulin resistance, and glucose intolerance; males were affected to a greater degree than females. The combination of perinatal growth failure and late-onset obesity and insulin resistance suggests that the lactogen-resistant/GH-deficient mouse may serve as a model for the development of the metabolic syndrome.


Asunto(s)
Animales Recién Nacidos/crecimiento & desarrollo , Animales Recién Nacidos/metabolismo , Hormona del Crecimiento/fisiología , Lactógeno Placentario/fisiología , Prolactina/fisiología , Tejido Adiposo/crecimiento & desarrollo , Envejecimiento , Animales , Animales Recién Nacidos/sangre , Glucemia/metabolismo , Densidad Ósea , Resistencia a Medicamentos , Femenino , Fémur/crecimiento & desarrollo , Glucosa/fisiología , Hormona del Crecimiento/deficiencia , Insulina/sangre , Insulina/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Concentración Osmolar , Receptores de Prolactina/deficiencia , Somatomedinas/metabolismo , Aumento de Peso
9.
Cell Rep ; 13(9): 1881-94, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26655903

RESUMEN

In contrast to the class I phosphoinositide 3-kinases (PI3Ks), the organismal roles of the kinase activity of the class II PI3Ks are less clear. Here, we report that class II PI3K-C2ß kinase-dead mice are viable and healthy but display an unanticipated enhanced insulin sensitivity and glucose tolerance, as well as protection against high-fat-diet-induced liver steatosis. Despite having a broad tissue distribution, systemic PI3K-C2ß inhibition selectively enhances insulin signaling only in metabolic tissues. In a primary hepatocyte model, basal PI3P lipid levels are reduced by 60% upon PI3K-C2ß inhibition. This results in an expansion of the very early APPL1-positive endosomal compartment and altered insulin receptor trafficking, correlating with an amplification of insulin-induced, class I PI3K-dependent Akt signaling, without impacting MAPK activity. These data reveal PI3K-C2ß as a critical regulator of endosomal trafficking, specifically in insulin signaling, and identify PI3K-C2ß as a potential drug target for insulin sensitization.


Asunto(s)
Fosfatidilinositol 3-Quinasas Clase II/metabolismo , Insulina/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Autofagia , Glucemia/análisis , Células Cultivadas , Fosfatidilinositol 3-Quinasas Clase II/genética , Dieta Alta en Grasa , Endosomas/metabolismo , Hígado Graso/metabolismo , Hígado Graso/patología , Técnicas de Sustitución del Gen , Hepatocitos/citología , Hepatocitos/metabolismo , Insulina/sangre , Hígado/patología , Ratones , Ratones Endogámicos C57BL , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal
10.
Mol Cell Biol ; 32(19): 4001-11, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22851690

RESUMEN

Signaling downstream of mechanistic target of rapamycin complexes 1 and 2 (mTORC1 and mTORC2) controls specific and distinct aspects of insulin action and nutrient homeostasis in an interconnected and as yet unclear way. Mice lacking the mTORC1 substrate S6 kinase 1 (S6K1) maintain proper glycemic control with a high-fat diet. This phenotype is accompanied by insulin hypersensitivity, Akt- and AMP-activated kinase upregulation, and increased lipolysis in adipose tissue and skeletal muscle. Here, we show that, when S6K1 inactivation is combined with the deletion of the mTORC2 substrate Akt2, glucose homeostasis is compromised due to defects in both insulin action and ß-cell function. After a high-fat diet, the S6K1(-/-) Akt2(-/-) double-mutant mice do not become obese, though they are severely hyperglycemic. Our data demonstrate that S6K1 is required for pancreatic ß-cell growth and function during adaptation to insulin resistance states. Strikingly, the inactivation of two targets of mTOR and phosphatidylinositol 3-kinase signaling is sufficient to reproduce major hallmarks of type 2 diabetes.


Asunto(s)
Dieta Alta en Grasa , Eliminación de Gen , Glucosa/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Quinasas S6 Ribosómicas 90-kDa/genética , Animales , Proliferación Celular , Células Cultivadas , Dieta Alta en Grasa/efectos adversos , Hiperglucemia/genética , Hiperglucemia/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Aumento de Peso
11.
Cell Metab ; 5(6): 476-87, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17550782

RESUMEN

S6 kinase (S6K) deletion in metazoans causes small cell size, insulin hypersensitivity, and metabolic adaptations; however, the underlying molecular mechanisms are unclear. Here we show that S6K-deficient skeletal muscle cells have increased AMP and inorganic phosphate levels relative to ATP and phosphocreatine, causing AMP-activated protein kinase (AMPK) upregulation. Energy stress and muscle cell atrophy are specifically triggered by the S6K1 deletion, independent of S6K2 activity. Two known AMPK-dependent functions, mitochondrial biogenesis and fatty acid beta-oxidation, are upregulated in S6K-deficient muscle cells, leading to a sharp depletion of lipid content, while glycogen stores are spared. Strikingly, AMPK inhibition in S6K-deficient cells restores cell growth and sensitivity to nutrient signals. These data indicate that S6K1 controls the energy state of the cell and the AMPK-dependent metabolic program, providing a mechanism for cell mass accumulation under high-calorie diet.


Asunto(s)
Adaptación Fisiológica , Adenilato Quinasa/metabolismo , Eliminación de Gen , Músculo Esquelético/fisiología , Proteína S6 Ribosómica/fisiología , Adenilato Quinasa/antagonistas & inhibidores , Adenilato Quinasa/genética , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/metabolismo , Animales , Células Cultivadas , Metabolismo Energético , Activación Enzimática , Ayuno , Prueba de Tolerancia a la Glucosa , Proteínas Fluorescentes Verdes/metabolismo , Hipoglucemiantes/metabolismo , Immunoblotting , Espectroscopía de Resonancia Magnética , Ratones , Ratones Noqueados , Fibras Musculares Esqueléticas/fisiología , Palmitatos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , ARN Interferente Pequeño/farmacología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Ribonucleótidos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA