Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Methods ; 99: 28-36, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-26361830

RESUMEN

Polymeric biomaterials are often used for stimulating nerve regeneration. Among different conduits, poly(lactide acid) - PLA polymer is considered to be a good substrate due to its biocompatibility and resorbable characteristics. This polymer is an aliphatic polyester which has been mostly used in biomedical application. It is an organic compound with low allergenic potential, low toxicity, high biocompatibility and predictable kinetics of degradation. In this study we fabricated and evaluated a PLA microporous hollow fiber as a conduit for its ability to bridge a nerve gap in a mouse sciatic nerve injury model. The PLA conduit was prepared from a polymer solution, throughout extrusion technique. The left sciatic nerve of C57BL/6 mouse was transected and the nerve stumps were placed into a resorbable PLA (PLA group) or a PCL conduit (PCL group), n=5 each group. We have also used another group in which the nerves were repaired by autograft (autograft group, n=5). Motor function was analyzed according to sciatic functional index (SFI). After 56days, the regenerated nerves were processed for light and electron microscopy and morphometric analyses were performed. A quantitative analysis of regenerated nerves showed significant increase in the number of myelinated fibers and blood vessels in animals that received PLA conduit. The PLA group exhibited better overall tissue organization compared to other groups. Presenting well-organized bundles, many regenerating clusters composed of preserved nerve fibers surrounded by layers of compacted perineurium-like cells. Also the SFI revealed a significant improvement in functional recovery. This work suggests that PLA conduits are suitable substrate for cell survival and it provides an effective strategy to be used to support axonal growth becoming a potential alternative to autograft.


Asunto(s)
Regeneración Nerviosa , Poliésteres/química , Nervio Ciático/fisiopatología , Andamios del Tejido/química , Animales , Supervivencia Celular , Células Cultivadas , Estudios de Evaluación como Asunto , Implantes Experimentales , Masculino , Ratones Endogámicos C57BL , Traumatismos de los Nervios Periféricos/terapia , Recuperación de la Función , Células de Schwann/fisiología , Células de Schwann/ultraestructura
2.
Neurotrauma Rep ; 5(1): 957-968, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39464528

RESUMEN

Spinal cord injury (SCI) is one of the most serious conditions of the central nervous system, causing motor and sensory deficits that lead to a significant impairment in the quality of life. Previous studies have indicated that inosine can promote regeneration after SCI. Here we investigated the effects of inosine on the behavioral and morphological recovery after a compressive injury. Adult female C57BL/6 mice were subjected to laminectomy and spinal cord compression using a vascular clip. Inosine or saline injections were administered intraperitoneally, with the first dose performed 24 h after injury and daily for 7 days after injury. The mice were evaluated using Basso Mouse Scale (BMS), locomotor rating scale, and pinprick test for 8 weeks. At the end, the animals were anesthetized and euthanized, and the spinal cords were collected for morphological evaluation. Inosine-treated animals presented better results in the immunostaining for oligodendrocytes and in the number of myelinated fibers through semithin sections compared to saline-treated animals, showing that there was a greater preservation of the white matter. Analysis of the immunoreactivity of astrocytes and evaluation of the inflammatory profile with macrophage labeling revealed that the animals of the inosine group had a lower immunoreactivity when compared to control, which suggests a reduction of the glial scar and less inflammation, respectively, leading to a more favorable microenvironment for spinal cord regeneration. Indeed, inosine-treated animals scored higher on the BMS scale and presented better results on the pinprick test, indicating that the treatment contributed to motor and sensory recovery. After the animals were sacrificed, we obtained the electroneuromyography, where the inosine group showed a greater amplitude of the compound muscle action potential. These results indicate that inosine contributed to the regeneration process in the spinal cord of mice submitted to compressive injury and should be further investigated as a candidate for SCI therapy.

3.
Exp Neurol ; 377: 114785, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38670250

RESUMEN

Spinal cord injury (SCI) results from various mechanisms that damage the nervous tissue and the blood-brain barrier, leading to sensory and motor function loss below the injury site. Unfortunately, current therapeutic approaches for SCI have limited efficacy in improving patients outcomes. Galectin-3, a protein whose expression increases after SCI, influences the neuroinflammatory response by favoring pro-inflammatory M1 macrophages and microglia, while inhibiting pro-regenerative M2 macrophages and microglia, which are crucial for inflammation resolution and tissue regeneration. Previous studies with Galectin-3 knock-out mice demonstrated enhanced motor recovery after SCI. The M1/M2 balance is strongly influenced by the predominant lymphocytic profiles (Th1, Th2, T Reg, Th17) and cytokines and chemokines released at the lesion site. The present study aimed to investigate how the absence of galectin-3 impacts the adaptive immune system cell population dynamics in various lymphoid spaces following a low thoracic spinal cord compression injury (T9-T10) using a 30 g vascular clip for one minute. It also aimed to assess its influence on the functional outcome in wild-type (WT)and Galectin-3 knock-out (GALNEG) mice. Histological analysis with hematoxylin-eosin and Luxol Fast Blue staining revealed that WT and GALNEG animals exhibit similar spinal cord morphology. The absence of galectin-3 does not affect the common neuroanatomy shared between the groups prompting us to analyze outcomes between both groups. Following our crush model, both groups lost motor and sensory functions below the lesion level. During a 42-day period, GALNEG mice demonstrated superior locomotor recovery in the Basso Mouse Scale (BMS) gait analysis and enhanced motor coordination performance in the ladder rung walk test (LRW) compared to WT mice. GALNEG mice also exhibited better sensory recovery, and their electrophysiological parameters suggested a higher number of functional axons with faster nerve conduction. Seven days after injury, flow cytometry of thymus, spleen, and blood revealed an increased number of T Reg and Th2 cells, accompanied by a decrease in Th1 and Th17 cells in GALNEG mice. Immunohistochemistry conducted on the same day exhibited an increased number of Th2 and T Reg cells around the GALNEG's spinal cord lesion site. At 42-day dpi immunohistochemistry analyses displayed reduced astrogliosis and greater axon preservation in GALNEG's spinal cord seem as a reduction of GFAP immunostaining and an increase in NFH immunostaining, respectively. In conclusion, GALNEG mice exhibited better functional recovery attributed to the milder pro-inflammatory influence, compensated by a higher quantity of T Reg and Th2 cells. These findings suggest that galectin-3 plays a crucial role in the immune response after spinal cord injury and could be a potential target for clinical therapeutic interventions.


Asunto(s)
Galectina 3 , Ratones Endogámicos C57BL , Ratones Noqueados , Recuperación de la Función , Traumatismos de la Médula Espinal , Animales , Traumatismos de la Médula Espinal/patología , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/fisiopatología , Recuperación de la Función/fisiología , Galectina 3/metabolismo , Galectina 3/genética , Ratones , Linfocitos/metabolismo , Femenino , Masculino
4.
Neural Regen Res ; 18(1): 23-30, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35799504

RESUMEN

Injuries to the spinal cord result in permanent disabilities that limit daily life activities. The main reasons for these poor outcomes are the limited regenerative capacity of central neurons and the inhibitory milieu that is established upon traumatic injuries. Despite decades of research, there is still no efficient treatment for spinal cord injury. Many strategies are tested in preclinical studies that focus on ameliorating the functional outcomes after spinal cord injury. Among these, molecular compounds are currently being used for neurological recovery, with promising results. These molecules target the axon collapsed growth cone, the inhibitory microenvironment, the survival of neurons and glial cells, and the re-establishment of lost connections. In this review we focused on molecules that are being used, either in preclinical or clinical studies, to treat spinal cord injuries, such as drugs, growth and neurotrophic factors, enzymes, and purines. The mechanisms of action of these molecules are discussed, considering traumatic spinal cord injury in rodents and humans.

5.
Cell Tissue Res ; 342(1): 97-105, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20809413

RESUMEN

Several studies have demonstrated the relationship between exercise and the extracellular matrix of muscle tendons, and have described alterations in their structural and biochemical properties when subjected to strenuous exercise. However, little is known about what happens to tendons when they are subjected to stretching. We evaluated the changes in the composition and structure of rat calcaneal tendons subjected to a stretching program. The animals had their muscles stretched for 30 s with 30 s of rest, with 10 repetitions, three and five times a week for 21 days. For morphological analysis, the sections were stained with hematoxylin-eosin and toluidine blue. For biochemical analysis, the tendons were treated with 4 M guanidine hydrochloride and analyzed in SDS-PAGE. The contents of total proteins and glycosaminoglycans were also measured. In the sections stained with toluidine blue, we could observe an increase of rounded cells, especially in the enthesis region. In the region next to the enthesis was a metachromatic region, which was more intensely stained in the stretched groups. In the tension regions, the cells appeared more aligned. Cellularity increased in both regions. The SDS-PAGE analysis showed a larger amount of collagen in the stretched groups and a polydispersed component of 65 kDa in all the groups. The amounts of proteins and glycosaminoglycans were also larger in the stretched tendons. The agarose-gel electrophoresis confirmed the presence of dermatan sulfate in the tension and compression regions, and of chondroitin sulfate only in the latter. Our results showed that the stretching stimulus changed the cellularity and the amount of the extracellular matrix compounds, confirming that tendons are dynamic structures with a capacity to detect alterations in their load.


Asunto(s)
Sulfatos de Condroitina/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Matriz Extracelular/metabolismo , Ejercicios de Estiramiento Muscular , Condicionamiento Físico Animal , Tendones/metabolismo , Animales , Ratas , Ratas Wistar
6.
Brain Res ; 1726: 146494, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31586628

RESUMEN

Spinal cord injury (SCI) is considered a serious neurological disorder that can lead to severe sensory, motor and autonomic deficits. In this work, we investigated whether cell therapy associated with physical activity after mouse SCI could promote morphological and functional outcomes, using a lesion model established by our group. Mesenchymal stem cells (8 × 105 cells/2 µL) or DMEM (2 µL), were injected in the epicenter of the lesion at 7 days after SCI, and the mice started a moderate treadmill training 14 days after injury. Functional assessments were performed weekly up to 8 weeks after injury when the morphological analyses were also performed. Four injured groups were analyzed: DMEM (SCI plus DMEM injection), MSCT (SCI plus MSC injection), DMEM + TMT (SCI plus DMEM injection and treadmill training) and MSCT + TMT (SCI plus MSC injection and treadmill training). The animals that received the combined therapy (MSCT + TMT) were able to recover and maintained the better functional results throughout the analyzed period. The morphometric analysis from MSCT + TMT group evidenced a larger spared white matter area and a higher number of preserved myelinated fibers with the majority of them reaching the ideal G-ratio values, when compared to other groups. Ultrastructural analysis from this group, using transmission electron microscopy, showed better tissue preservation with few microcavitations and degenerating nerve fibers. Also, this group exhibited a significantly higher neurotrophin 4 (NT4) expression as compared to the other groups. The results provided by this study support the conclusion that the association of strategies is a potential therapeutic approach to treat SCI, with the possibility of translation into the clinical practice.


Asunto(s)
Terapia por Ejercicio , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/fisiología , Traumatismos de la Médula Espinal/patología , Traumatismos de la Médula Espinal/terapia , Animales , Encéfalo/patología , Ratones Endogámicos C57BL , Ratones Transgénicos , Médula Espinal/ultraestructura , Sustancia Blanca/patología
7.
Connect Tissue Res ; 50(5): 279-84, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19863386

RESUMEN

The role of physical activity in affecting the composition of extracellular matrix and mechanical properties of tendons has been well studied, but little is known about the role of passive stretching. The purpose of this study was to test the hypothesis that stimulation by passive stretching may change the composition and mechanical properties of tendons. Three-month-old Wistar rats were divided into three groups: the control, animals were not submitted to stretching procedures; groups that had their calcaneal tendons manually stretched three or five times a week, for 21 days. Afterward, the calcaneal tendons were removed and assayed for hydroxyproline content and biomechanical test. The hydroxyproline content in the stretched groups was higher, suggesting that more collagen was present in the tendons of these groups. These tendons also showed higher values of maximum stress and modulus of elasticity or Young's modulus. These results indicate that stretching leads to alterations in the synthesis of the extracellular matrix components and in the mechanical properties of tendons.


Asunto(s)
Calcáneo/química , Calcáneo/fisiología , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Tendones/química , Tendones/fisiología , Resistencia a la Tracción/fisiología , Adaptación Fisiológica/fisiología , Animales , Fenómenos Biomecánicos , Calcáneo/anatomía & histología , Elasticidad/fisiología , Fibroblastos/metabolismo , Hidroxiprolina/análisis , Hidroxiprolina/metabolismo , Locomoción/fisiología , Masculino , Movimiento/fisiología , Contracción Muscular/fisiología , Ratas , Estrés Mecánico , Tendones/anatomía & histología , Regulación hacia Arriba/fisiología
8.
Neural Regen Res ; 13(6): 1046-1053, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29926832

RESUMEN

In spite of advances in surgical care and rehabilitation, the consequences of spinal cord injury (SCI) are still challenging. Several experimental therapeutic strategies have been studied in the SCI field, and recent advances have led to the development of therapies that may act on the inhibitory microenvironment. Assorted lineages of stem cells are considered a good treatment for SCI. This study investigated the effect of systemic transplantation of mesenchymal stem cells (MSCs) in a compressive SCI model. Here we present results of the intraperitoneal route, which has not been used previously for MSC administration after compressive SCI. We used adult female C57BL/6 mice that underwent laminectomy at the T9 level, followed by spinal cord compression for 1 minute with a 30-g vascular clip. The animals were divided into five groups: sham (anesthesia and laminectomy but without compression injury induction), MSC i.p. (intraperitoneal injection of 8 × 105 MSCs in 500 µL of DMEM at 7 days after SCI), MSC i.v. (intravenous injection of 8 × 105 MSCs in 500 µL of DMEM at 7 days after SCI), DMEM i.p. (intraperitoneal injection of 500 µL of DMEM at 7 days after SCI), DMEM i.v. (intravenous injection of 500 µL of DMEM at 7 days after SCI). The effects of MSCs transplantation in white matter sparing were analyzed by luxol fast blue staining. The number of preserved fibers was counted in semithin sections stained with toluidine blue and the presence of trophic factors was analyzed by immunohistochemistry. In addition, we analyzed the locomotor performance with Basso Mouse Scale and Global Mobility Test. Our results showed white matter preservation and a larger number of preserved fibers in the MSC groups than in the DMEM groups. Furthermore, the MSC groups had higher levels of trophic factors (brain-derived neurotrophic factor, nerve growth factor, neurotrophin-3 and neurotrophin-4) in the spinal cord and improved locomotor performance. Our results indicate that injection of MSCs by either intraperitoneal or intravenous routes results in beneficial outcomes and can be elected as a choice for SCI treatment.

9.
Brain Res ; 1669: 69-78, 2017 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-28554806

RESUMEN

Preventing damage caused by nerve degeneration is a great challenge. There is a growing body of evidence implicating extracellular nucleotides and their P2 receptors in many pathophysiological mechanisms. In this work we aimed to investigate the effects of the administration of Brilliant Blue G (BBG) and Pyridoxalphosphate-6-azophenyl-2', 4'- disulphonic acid (PPADS), P2X7 and P2 non-selective receptor antagonists, respectively, on sciatic nerve regeneration. Four groups of mice that underwent nerve crush lesion were used: two control groups treated with vehicle (saline), a group treated with BBG and a group treated with PPADS during 28days. Gastrocnemius muscle weight was evaluated. For functional evaluation we used the Sciatic Functional Index (SFI) and the horizontal ladder walking test. Nerves, dorsal root ganglia and spinal cords were processed for light and electron microscopy. Antinoceptive effects of BBG and PPADS were evaluated through von Frey E, and the levels of IL-1ß and TNF-α were analyzed by ELISA. BBG promoted an increase in the number of myelinated fibers and on axon, fiber and myelin areas. BBG and PPADS led to an increase of TNF-α and IL-1ß in the nerve on day 1 and PPADS caused a decrease of IL-1ß on day 7. Mechanical allodynia was reversed on day 7 in the groups treated with BBG and PPADS. We concluded that BBG promoted a better morphological regeneration after ischiatic crush injury, but this was not followed by anticipation of functional improvement. In addition, both PPADS and BBG presented anti-inflammatory as well as antinociceptive effects.


Asunto(s)
Lesiones por Aplastamiento/tratamiento farmacológico , Regeneración Nerviosa/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Traumatismos de los Nervios Periféricos/tratamiento farmacológico , Antagonistas del Receptor Purinérgico P2X/farmacología , Analgésicos/farmacología , Animales , Lesiones por Aplastamiento/metabolismo , Lesiones por Aplastamiento/patología , Modelos Animales de Enfermedad , Femenino , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/metabolismo , Ganglios Espinales/patología , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/metabolismo , Hiperalgesia/patología , Interleucina-1alfa/metabolismo , Ratones Endogámicos C57BL , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , Regeneración Nerviosa/fisiología , Traumatismos de los Nervios Periféricos/metabolismo , Traumatismos de los Nervios Periféricos/patología , Nervios Periféricos/efectos de los fármacos , Nervios Periféricos/metabolismo , Nervios Periféricos/patología , Fosfato de Piridoxal/análogos & derivados , Fosfato de Piridoxal/farmacología , Distribución Aleatoria , Receptores Purinérgicos P2X7/metabolismo , Colorantes de Rosanilina/farmacología , Médula Espinal/efectos de los fármacos , Médula Espinal/metabolismo , Médula Espinal/patología , Factor de Necrosis Tumoral alfa/metabolismo
10.
Restor Neurol Neurosci ; 33(1): 43-55, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25537259

RESUMEN

PURPOSE: Despite substantial advances in surgical care and rehabilitation, the consequences of spinal cord injury (SCI) continue to present major challenges. Here we investigate whether transplantation of mesenchymal stem cells (MSCs) in mice during the chronic stage of SCI has benefits in terms of morphological and functional outcomes. METHODS: Mice were subjected to laminectomy at the T9 level, followed by a 1 minute spinal cord compression with a vascular clip. Four weeks later, 8 × 105 MSCs obtained from GFP mice were injected into the injury site. After eight weeks the analyses were performed. RESULTS: The spinal cords of MSC-treated animals exhibited better white-matter preservation, greater numbers of fibers, higher levels of trophic factor expression, and better ultrastructural tissue organization. Furthermore, transplanted MSCs were not immunoreactive for neural markers, indicating that these cells mediate functional recovery through a paracrine effect, rather than by transforming into and replacing damaged glia in the spinal cord. MSC-treated mice also showed better functional improvement than control animals. CONCLUSION: We conclude that MSC-based cell therapy, even when applied during the chronic phase of SCI, leads to changes in a number of structural and functional parameters, all of which indicate improved recovery.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/fisiología , Factores de Crecimiento Nervioso/inmunología , Traumatismos de la Médula Espinal/cirugía , Análisis de Varianza , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Proteína Ácida Fibrilar de la Glía/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Macrófagos , Células Madre Mesenquimatosas/ultraestructura , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Electrónica , Microscopía Electrónica de Transmisión , Factores de Crecimiento Nervioso/genética , Proteínas S100/metabolismo , Traumatismos de la Médula Espinal/patología , Resultado del Tratamiento , Sustancia Blanca/patología , Sustancia Blanca/ultraestructura
11.
Methods Mol Biol ; 1162: 149-56, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24838965

RESUMEN

Experimental spinal cord injury (SCI) can maintain the continuity of the spinal cord, as in the contusion (e.g., weight-fall) or compression models, or not, when there is a partial or a complete transection. The majority of acute human SCI is not followed by complete transection, but there is a combination of contusion, compression, and possibly partial transection. The method described here is a compressive mouse model that presents a combination of contusion and compression components and has many facilities in its execution. This lesion was established by our group and represents a simple, reliable, and inexpensive clip compression model with functional and morphological reproducibility. In this chapter we describe, step by step, the protocol of this experimental SCI.


Asunto(s)
Modelos Animales de Enfermedad , Compresión de la Médula Espinal , Animales , Femenino , Ratones , Ratones Endogámicos C57BL , Procedimientos Neuroquirúrgicos/métodos , Médula Espinal/patología , Médula Espinal/fisiopatología , Médula Espinal/cirugía , Compresión de la Médula Espinal/patología , Compresión de la Médula Espinal/fisiopatología
12.
World J Stem Cells ; 6(2): 179-94, 2014 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-24772245

RESUMEN

Mesenchymal stem cell (MSC) therapy has attracted the attention of scientists and clinicians around the world. Basic and pre-clinical experimental studies have highlighted the positive effects of MSC treatment after spinal cord and peripheral nerve injury. These effects are believed to be due to their ability to differentiate into other cell lineages, modulate inflammatory and immunomodulatory responses, reduce cell apoptosis, secrete several neurotrophic factors and respond to tissue injury, among others. There are many pre-clinical studies on MSC treatment for spinal cord injury (SCI) and peripheral nerve injuries. However, the same is not true for clinical trials, particularly those concerned with nerve trauma, indicating the necessity of more well-constructed studies showing the benefits that cell therapy can provide for individuals suffering the consequences of nerve lesions. As for clinical trials for SCI treatment the results obtained so far are not as beneficial as those described in experimental studies. For these reasons basic and pre-clinical studies dealing with MSC therapy should emphasize the standardization of protocols that could be translated to the clinical set with consistent and positive outcomes. This review is based on pre-clinical studies and clinical trials available in the literature from 2010 until now. At the time of writing this article there were 43 and 36 pre-clinical and 19 and 1 clinical trials on injured spinal cord and peripheral nerves, respectively.

13.
PLoS One ; 9(10): e110090, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25333892

RESUMEN

BACKGROUND: Despite the regenerative potential of the peripheral nervous system, severe nerve lesions lead to loss of target-organ innervation, making complete functional recovery a challenge. Few studies have given attention to combining different approaches in order to accelerate the regenerative process. OBJECTIVE: Test the effectiveness of combining Schwann-cells transplantation into a biodegradable conduit, with treadmill training as a therapeutic strategy to improve the outcome of repair after mouse nerve injury. METHODS: Sciatic nerve transection was performed in adult C57BL/6 mice; the proximal and distal stumps of the nerve were sutured into the conduit. Four groups were analyzed: acellular grafts (DMEM group), Schwann cell grafts (3×105/2 µL; SC group), treadmill training (TMT group), and treadmill training and Schwann cell grafts (TMT + SC group). Locomotor function was assessed weekly by Sciatic Function Index and Global Mobility Test. Animals were anesthetized after eight weeks and dissected for morphological analysis. RESULTS: Combined therapies improved nerve regeneration, and increased the number of myelinated fibers and myelin area compared to the DMEM group. Motor recovery was accelerated in the TMT + SC group, which showed significantly better values in sciatic function index and in global mobility test than in the other groups. The TMT + SC group showed increased levels of trophic-factor expression compared to DMEM, contributing to the better functional outcome observed in the former group. The number of neurons in L4 segments was significantly higher in the SC and TMT + SC groups when compared to DMEM group. Counts of dorsal root ganglion sensory neurons revealed that TMT group had a significant increased number of neurons compared to DMEM group, while the SC and TMT + SC groups had a slight but not significant increase in the total number of motor neurons. CONCLUSION: These data provide evidence that this combination of therapeutic strategies can significantly improve functional and morphological recovery after sciatic injury.


Asunto(s)
Trasplante de Células , Regeneración Nerviosa , Condicionamiento Físico Animal , Células de Schwann/citología , Nervio Ciático/citología , Nervio Ciático/fisiología , Animales , Axones/fisiología , Supervivencia Celular , Modelos Animales de Enfermedad , Masculino , Ratones , Neuronas Motoras/fisiología , Factores de Crecimiento Nervioso/metabolismo , Unión Neuromuscular , Traumatismos de los Nervios Periféricos/patología , Traumatismos de los Nervios Periféricos/fisiopatología , Traumatismos de los Nervios Periféricos/terapia , Poliésteres/metabolismo , Recuperación de la Función , Nervio Ciático/ultraestructura
14.
Tissue Eng Part A ; 18(19-20): 2030-9, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22646222

RESUMEN

Despite the fact that the peripheral nervous system is able to regenerate after traumatic injury, the functional outcomes following damage are limited and poor. Bone marrow mesenchymal stem cells (MSCs) are multipotent cells that have been used in studies of peripheral nerve regeneration and have yielded promising results. The aim of this study was to evaluate sciatic nerve regeneration and neuronal survival in mice after nerve transection followed by MSC treatment into a polycaprolactone (PCL) nerve guide. The left sciatic nerve of C57BL/6 mice was transected and the nerve stumps were placed into a biodegradable PCL tube leaving a 3-mm gap between them; the tube was filled with MSCs obtained from GFP+ animals (MSC-treated group) or with a culture medium (Dulbecco's modified Eagle's medium group). Motor function was analyzed according to the sciatic functional index (SFI). After 6 weeks, animals were euthanized, and the regenerated sciatic nerve, the dorsal root ganglion (DRG), the spinal cord, and the gastrocnemius muscle were collected and processed for light and electron microscopy. A quantitative analysis of regenerated nerves showed a significant increase in the number of myelinated fibers in the group that received, within the nerve guide, stem cells. The number of neurons in the DRG was significantly higher in the MSC-treated group, while there was no difference in the number of motor neurons in the spinal cord. We also found higher values of trophic factors expression in MSC-treated groups, especially a nerve growth factor. The SFI revealed a significant improvement in the MSC-treated group. The gastrocnemius muscle showed an increase in weight and in the levels of creatine phosphokinase enzyme, suggesting an improvement of reinnervation and activity in animals that received MSCs. Immunohistochemistry documented that some GFP+ -transplanted cells assumed a Schwann-cell-like phenotype, as evidenced by their expression of the S-100 protein, a Schwann cell marker. Our findings suggest that using a PCL tube filled with MSCs is a good strategy to improve nerve regeneration after a nerve transection in mice.


Asunto(s)
Células Madre Mesenquimatosas/citología , Regeneración Nerviosa/fisiología , Traumatismos de los Nervios Periféricos/terapia , Poliésteres/química , Nervio Ciático/citología , Células Receptoras Sensoriales/citología , Animales , Células Cultivadas , Inmunohistoquímica , Masculino , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica de Transmisión
16.
J Neurotrauma ; 28(9): 1939-49, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21609310

RESUMEN

Strategies aimed at improving spinal cord regeneration after trauma are still challenging neurologists and neuroscientists throughout the world. Many cell-based therapies have been tested, with limited success in terms of functional outcome. In this study, we investigated the effects of human dental pulp cells (HDPCs) in a mouse model of compressive spinal cord injury (SCI). These cells present some advantages, such as the ease of the extraction process, and expression of trophic factors and embryonic markers from both ecto-mesenchymal and mesenchymal components. Young adult female C57/BL6 mice were subjected to laminectomy at T9 and compression of the spinal cord with a vascular clip for 1 min. The cells were transplanted 7 days or 28 days after the lesion, in order to compare the recovery when treatment is applied in a subacute or chronic phase. We performed quantitative analyses of white-matter preservation, trophic-factor expression and quantification, and ultrastructural and functional analysis. Our results for the HDPC-transplanted animals showed better white-matter preservation than the DMEM groups, higher levels of trophic-factor expression in the tissue, better tissue organization, and the presence of many axons being myelinated by either Schwann cells or oligodendrocytes, in addition to the presence of some healthy-appearing intact neurons with synapse contacts on their cell bodies. We also demonstrated that HDPCs were able to express some glial markers such as GFAP and S-100. The functional analysis also showed locomotor improvement in these animals. Based on these findings, we propose that HDPCs may be feasible candidates for therapeutic intervention after SCI and central nervous system disorders in humans.


Asunto(s)
Trasplante de Células/métodos , Pulpa Dental/trasplante , Fibras Nerviosas Mielínicas/patología , Recuperación de la Función/fisiología , Compresión de la Médula Espinal/terapia , Médula Espinal/patología , Animales , Axones/patología , Pulpa Dental/citología , Femenino , Humanos , Ratones , Modelos Animales , Actividad Motora/fisiología , Neuroglía/patología , Neuronas/patología , Médula Espinal/fisiopatología , Compresión de la Médula Espinal/patología , Compresión de la Médula Espinal/fisiopatología , Resultado del Tratamiento
17.
Brain Res ; 1349: 115-28, 2010 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-20599835

RESUMEN

We tested the effects of mouse embryonic stem cells (mES) grafts in mice spinal cord injury (SCI). Young adult female C57/Bl6 mice were subjected to laminectomy at T9 and 1-minute compression of the spinal cord with a vascular clip. Four groups were analyzed: laminectomy (Sham), injured (SCI), vehicle (DMEM), and mES-treated (EST). mES pre-differentiated with retinoic acid were injected (8 x 10(5) cells/2 microl) into the lesion epicenter, 10 min after SCI. Basso mouse scale (BMS) and Global mobility test (GMT) were assessed weekly up to 8 weeks, when morphological analyses were performed. GMT analysis showed that EST animals moved faster (10.73+/-0.9076, +/-SEM) than SCI (5.581+/-0.2905) and DMEM (5.705+/-0.2848), but slower than Sham animals (15.80+/-0.3887, p<0.001). By BMS, EST animals reached the final phase of locomotor recovery (3.872+/-0.7112, p<0.01), while animals of the SCI and DMEM groups improved to an intermediate phase (2.037+/-0.3994 and 2.111+/-0.3889, respectively). White matter area and number of myelinated nerve fibers were greater in EST (46.80+/-1.24 and 279.4+/-16.33, respectively) than the SCI group (39.97+/-0.925 and 81.39+/-8.078, p<0.05, respectively). EST group also presented better G-ratio values when compared with SCI group (p<0.001). Immunohistochemical revealed the differentiation of transplanted cells into astrocytes, oligodendrocytes, and Schwann cells, indicating an integration of transplanted cells with host tissue. Ultrastructural analysis showed, in the EST group, better tissue preservation and more remyelination by oligodendrocytes and Schwann cells than the other groups. Our results indicate that acute transplantation of predifferentiated mES into the injured spinal cord increased the spared white matter and number of nerve fibers, improving locomotor function.


Asunto(s)
Células Madre Embrionarias/fisiología , Recuperación de la Función/fisiología , Compresión de la Médula Espinal/fisiopatología , Compresión de la Médula Espinal/cirugía , Trasplante de Células Madre , Análisis de Varianza , Animales , Conducta Animal , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/fisiología , Modelos Animales de Enfermedad , Embrión de Mamíferos , Femenino , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica de Transmisión/métodos , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Actividad Motora/fisiología , Proteína Básica de Mielina/metabolismo , Fibras Nerviosas Mielínicas/patología , Proteínas del Tejido Nervioso/metabolismo , Neuroglía/fisiología , Neuroglía/ultraestructura , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Células de Schwann/fisiología , Células de Schwann/ultraestructura , Compresión de la Médula Espinal/patología
18.
Micron ; 41(7): 783-90, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20728816

RESUMEN

Peripheral nerves possess the capacity of self-regeneration after traumatic injury. Nevertheless, the functional outcome after peripheral-nerve regeneration is often poor, especially if the nerve injuries occur far from their targets. Aiming to optimize axon regeneration, we grafted bone-marrow-derived cells (BMDCs) into a collagen-tube nerve guide after transection of the mouse sciatic nerve. The control group received only the culture medium. Motor function was tested at 2, 4, and 6 weeks after surgery, using the sciatic functional index (SFI), and showed that functional recovery was significantly improved in animals that received the cell grafts. After 6 weeks, the mice were anesthetized, perfused transcardially, and the sciatic nerves were dissected and processed for transmission electron microscopy and light microscopy. The proximal and distal segments of the nerves were compared, to address the question of improvement in growth rate; the results revealed a maintenance and increase of nerve regeneration for both myelinated and non-myelinated fibers in distal segments of the experimental group. Also, quantitative analysis of the distal region of the regenerating nerves showed that the numbers of myelinated fibers, Schwann cells (SCs) and g-ratio were significantly increased in the experimental group compared to the control group. The transdifferentiation of BMDCs into Schwann cells was confirmed by double labeling with S100/and Hoechst staining. Our data suggest that BMDCs transplanted into a nerve guide can differentiate into SCs, and improve the growth rate of nerve fibers and motor function in a transected sciatic-nerve model.


Asunto(s)
Médula Ósea , Diferenciación Celular , Regeneración , Células de Schwann/citología , Nervio Ciático/lesiones , Nervio Ciático/fisiología , Trasplante/métodos , Animales , Transdiferenciación Celular , Modelos Animales de Enfermedad , Femenino , Ratones , Ratones Endogámicos BALB C , Microscopía , Microscopía Electrónica de Transmisión , Nervio Ciático/citología
19.
Neural Regen Res ; 20(2): 343-353, 2025 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38819038

RESUMEN

Spinal cord injury results in the loss of sensory, motor, and autonomic functions, which almost always produces permanent physical disability. Thus, in the search for more effective treatments than those already applied for years, which are not entirely efficient, researches have been able to demonstrate the potential of biological strategies using biomaterials to tissue manufacturing through bioengineering and stem cell therapy as a neuroregenerative approach, seeking to promote neuronal recovery after spinal cord injury. Each of these strategies has been developed and meticulously evaluated in several animal models with the aim of analyzing the potential of interventions for neuronal repair and, consequently, boosting functional recovery. Although the majority of experimental research has been conducted in rodents, there is increasing recognition of the importance, and need, of evaluating the safety and efficacy of these interventions in non-human primates before moving to clinical trials involving therapies potentially promising in humans. This article is a literature review from databases (PubMed, Science Direct, Elsevier, Scielo, Redalyc, Cochrane, and NCBI) from 10 years ago to date, using keywords (spinal cord injury, cell therapy, non-human primates, humans, and bioengineering in spinal cord injury). From 110 retrieved articles, after two selection rounds based on inclusion and exclusion criteria, 21 articles were analyzed. Thus, this review arises from the need to recognize the experimental therapeutic advances applied in non-human primates and even humans, aimed at deepening these strategies and identifying the advantages and influence of the results on extrapolation for clinical applicability in humans.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA