Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Mol Genet Genomics ; 299(1): 73, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39066857

RESUMEN

Exploring the intricate relationships between plants and their resident microorganisms is crucial not only for developing new methods to improve disease resistance and crop yields but also for understanding their co-evolutionary dynamics. Our research delves into the role of the phyllosphere-associated microbiome, especially Actinomycetota species, in enhancing pathogen resistance in Theobroma grandiflorum, or cupuassu, an agriculturally valuable Amazonian fruit tree vulnerable to witches' broom disease caused by Moniliophthora perniciosa. While breeding resistant cupuassu genotypes is a possible solution, the capacity of the Actinomycetota phylum to produce beneficial metabolites offers an alternative approach yet to be explored in this context. Utilizing advanced long-read sequencing and metagenomic analysis, we examined Actinomycetota from the phyllosphere of a disease-resistant cupuassu genotype, identifying 11 Metagenome-Assembled Genomes across eight genera. Our comparative genomic analysis uncovered 54 Biosynthetic Gene Clusters related to antitumor, antimicrobial, and plant growth-promoting activities, alongside cutinases and type VII secretion system-associated genes. These results indicate the potential of phyllosphere-associated Actinomycetota in cupuassu for inducing resistance or antagonism against pathogens. By integrating our genomic discoveries with the existing knowledge of cupuassu's defense mechanisms, we developed a model hypothesizing the synergistic or antagonistic interactions between plant and identified Actinomycetota during plant-pathogen interactions. This model offers a framework for understanding the intricate dynamics of microbial influence on plant health. In conclusion, this study underscores the significance of the phyllosphere microbiome, particularly Actinomycetota, in the broader context of harnessing microbial interactions for plant health. These findings offer valuable insights for enhancing agricultural productivity and sustainability.


Asunto(s)
Enfermedades de las Plantas , Hojas de la Planta , Hojas de la Planta/microbiología , Hojas de la Planta/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Resistencia a la Enfermedad/genética , Microbiota/genética , Ecosistema , Actinobacteria/genética , Actinobacteria/aislamiento & purificación , Metagenómica/métodos , Metagenoma/genética , Filogenia , Brassicaceae/microbiología , Brassicaceae/genética
2.
Genomics ; 113(4): 2513-2525, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34089784

RESUMEN

Xanthomonas arboricola pv. juglandis (Xaj) is the most significant aboveground walnut bacterial pathogen. Disease management uses copper-based pesticides which induce pathogen resistance. We examined the genetic repertoire associated with adaptation and virulence evolution in Xaj. Comparative genomics of 32 Xaj strains reveal the possible acquisition and propagation of virulence factors via insertion sequences (IS). Fine-scale annotation revealed a Tn3 transposon (TnXaj417) encoding copper resistance genes acquired by horizontal gene transfer and associated with adaptation and tolerance to metal-based pesticides commonly used to manage pathogens in orchard ecosystems. Phylogenomic analysis reveals IS involvement in acquisition and diversification of type III effector proteins ranging from two to eight in non-pathogenic strains, 16 to 20 in pathogenic strains, besides six other putative effectors with a reduced identity degree found mostly among pathogenic strains. Yersiniabactin, xopK, xopAI, and antibiotic resistance genes are also located near ISs or inside genomic islands and structures resembling composite transposons.


Asunto(s)
Ecosistema , Genómica , Elementos Transponibles de ADN , Filogenia , Virulencia/genética , Xanthomonas
3.
BMC Genomics ; 20(1): 700, 2019 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-31500575

RESUMEN

BACKGROUND: Xanthomonas citri subsp. citri pathotypes cause bacterial citrus canker, being responsible for severe agricultural losses worldwide. The A pathotype has a broad host spectrum, while A* and Aw are more restricted both in hosts and in geography. Two previous phylogenomic studies led to contrasting well-supported clades for sequenced genomes of these pathotypes. No extensive biogeographical or divergence dating analytic approaches have been so far applied to available genomes. RESULTS: Based on a larger sampling of genomes than in previous studies (including six new genomes sequenced by our group, adding to a total of 95 genomes), phylogenomic analyses resulted in different resolutions, though overall indicating that A + AW is the most likely true clade. Our results suggest the high degree of recombination at some branches and the fast diversification of lineages are probable causes for this phylogenetic blurring effect. One of the genomes analyzed, X. campestris pv. durantae, was shown to be an A* strain; this strain has been reported to infect a plant of the family Verbenaceae, though there are no reports of any X. citri subsp. citri pathotypes infecting any plant outside the Citrus genus. Host reconstruction indicated the pathotype ancestor likely had plant hosts in the family Fabaceae, implying an ancient jump to the current Rutaceae hosts. Extensive dating analyses indicated that the origin of X. citri subsp. citri occurred more recently than the main phylogenetic splits of Citrus plants, suggesting dispersion rather than host-directed vicariance as the main driver of geographic expansion. An analysis of 120 pathogenic-related genes revealed pathotype-associated patterns of presence/absence. CONCLUSIONS: Our results provide novel insights into the evolutionary history of X. citri subsp. citri as well as a sound phylogenetic foundation for future evolutionary and genomic studies of its pathotypes.


Asunto(s)
Evolución Molecular , Variación Genética , Genómica , Filogeografía , Xanthomonas/genética , Xanthomonas/fisiología
4.
Bioinformatics ; 34(6): 1040-1042, 2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-29112698

RESUMEN

Motivation: Information about metabolic pathways in a comparative context is one of the most powerful tool to help the understanding of genome-based differences in phenotypes among organisms. Although several platforms exist that provide a wealth of information on metabolic pathways of diverse organisms, the comparison among organisms using metabolic pathways is still a difficult task. Results: We present TabPath (Tables for Metabolic Pathway), a web-based tool to facilitate comparison of metabolic pathways in genomes based on KEGG. From a selection of pathways and genomes of interest on the menu, TabPath generates user-friendly tables that facilitate analysis of variations in metabolism among the selected organisms. Availability and implementation: TabPath is available at http://200.239.132.160:8686. Contact: lmmorei@gmail.com.


Asunto(s)
Redes y Vías Metabólicas , Genoma
5.
BMC Bioinformatics ; 19(1): 172, 2018 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-29769032

RESUMEN

BACKGROUND: In phylogenetic reconstruction the result is a tree where all taxa are leaves and internal nodes are hypothetical ancestors. In a live phylogeny, both ancestral and living taxa may coexist, leading to a tree where internal nodes may be living taxa. The well-known Neighbor-Joining heuristic is largely used for phylogenetic reconstruction. RESULTS: We present Live Neighbor-Joining, a heuristic for building a live phylogeny. We have investigated Live Neighbor-Joining on datasets of viral genomes, a plausible scenario for its application, which allowed the construction of alternative hypothesis for the relationships among virus that embrace both ancestral and descending taxa. We also applied Live Neighbor-Joining on a set of bacterial genomes and to sets of images and texts. Non-biological data may be better explored visually when their relationship in terms of content similarity is represented by means of a phylogeny. CONCLUSION: Our experiments have shown interesting alternative phylogenetic hypothesis for RNA virus genomes, bacterial genomes and alternative relationships among images and texts, illustrating a wide range of scenarios where Live Neighbor-Joining may be used.


Asunto(s)
Modelos Genéticos , Filogenia , Plantas/química
6.
Mol Plant Microbe Interact ; 27(2): 163-76, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24200077

RESUMEN

Liberibacter spp. form a Rhizobiaceae clade of phloem-limited pathogens of limited host range. Two obligately parasitic species have been sequenced: 'Candidatus Liberibacter asiaticus', which causes citrus huanglongbing (HLB) worldwide, and 'Ca. L. solanacearum', which causes potato "zebra chip" disease. A third (proposed) species, Liberibacter crescens, was isolated from mountain papaya, grown in axenic culture, and sequenced. In an effort to identify common host determinants, the complete genomic DNA sequence of a second HLB species, 'Ca. L. americanus' strain 'São Paulo' was determined. The circular genome of 1,195,201 bp had an average 31.12% GC content and 983 predicted protein encoding genes, 800 (81.4%) of which had a predicted function. There were 658 genes common to all sequenced Liberibacter spp. and only 8 genes common to 'Ca. L. americanus' and 'Ca. L. asiaticus' but not found in 'Ca. L. solanacearum'. Surprisingly, most of the lipopolysaccharide biosynthetic genes were missing from the 'Ca. L. americanus' genome, as well as OmpA and a key regulator of flagellin, all indicating a 'Ca. L. americanus' strategy of avoiding production of major pathogen-associated molecular patterns present in 'Ca. L. asiaticus' and 'Ca. L. solanacearum'. As with 'Ca. L. asiaticus', one of two 'Ca. L. americanus' prophages replicated as an excision plasmid and carried potential lysogenic conversion genes that appeared fragmentary or degenerated in 'Ca. L. solanacearum'.


Asunto(s)
Carica/microbiología , Cromosomas Bacterianos/genética , Citrus/microbiología , Genoma Bacteriano/genética , Enfermedades de las Plantas/microbiología , Rhizobiaceae/genética , Proteínas Bacterianas/genética , Secuencia de Bases , ADN Bacteriano/química , ADN Bacteriano/genética , Genómica , Lipopolisacáridos/genética , Anotación de Secuencia Molecular , Datos de Secuencia Molecular , Filogenia , Plásmidos/genética , Análisis de Secuencia de ADN , Especificidad de la Especie
7.
Proc Natl Acad Sci U S A ; 108(46): 18637-42, 2011 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-22049339

RESUMEN

Molecules differentially expressed in blood vessels among organs or between damaged and normal tissues, are attractive therapy targets; however, their identification within the human vasculature is challenging. Here we screened a peptide library in cancer patients to uncover ligand-receptors common or specific to certain vascular beds. Surveying ~2.35 x 10(6) motifs recovered from biopsies yielded a nonrandom distribution, indicating that systemic tissue targeting is feasible. High-throughput analysis by similarity search, protein arrays, and affinity chromatography revealed four native ligand-receptors, three of which were previously unrecognized. Two are shared among multiple tissues (integrin α4/annexin A4 and cathepsin B/apolipoprotein E3) and the other two have a restricted and specific distribution in normal tissue (prohibitin/annexin A2 in white adipose tissue) or cancer (RAGE/leukocyte proteinase-3 in bone metastases). These findings provide vascular molecular markers for biotechnology and medical applications.


Asunto(s)
Vasos Sanguíneos/metabolismo , Médula Ósea/metabolismo , Neoplasias/metabolismo , Secuencias de Aminoácidos , Anexina A4/biosíntesis , Apolipoproteína E3/biosíntesis , Biopsia , Catepsina B/biosíntesis , Regulación Neoplásica de la Expresión Génica , Humanos , Integrina alfa4/biosíntesis , Ligandos , Neovascularización Patológica , Obesidad/metabolismo , Biblioteca de Péptidos
8.
Front Genet ; 15: 1352801, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38699231

RESUMEN

This study explores the resistome and bacterial diversity of two small lakes in the Southern Pantanal, one in Aquidauana sub-region, close to a farm, and one in Abobral sub-region, an environmentally preserved area. Shotgun metagenomic sequencing data from water column samples collected near and far from the floating macrophyte Eichhornia crassipes were used. The Abobral small lake exhibited the highest diversity and abundance of antibiotic resistance genes (ARGs), antibiotic resistance classes (ARGCs), phylum, and genus. RPOB2 and its resistance class, multidrug resistance, were the most abundant ARG and ARGC, respectively. Pseudomonadota was the dominant phylum across all sites, and Streptomyces was the most abundant genus considering all sites.

9.
PLoS Pathog ; 7(8): e1002130, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21901088

RESUMEN

Recently, genome sequencing of many isolates of genetically monomorphic bacterial human pathogens has given new insights into pathogen microevolution and phylogeography. Here, we report a genome-based micro-evolutionary study of a bacterial plant pathogen, Pseudomonas syringae pv. tomato. Only 267 mutations were identified between five sequenced isolates in 3,543,009 nt of analyzed genome sequence, which suggests a recent evolutionary origin of this pathogen. Further analysis with genome-derived markers of 89 world-wide isolates showed that several genotypes exist in North America and in Europe indicating frequent pathogen movement between these world regions. Genome-derived markers and molecular analyses of key pathogen loci important for virulence and motility both suggest ongoing adaptation to the tomato host. A mutational hotspot was found in the type III-secreted effector gene hopM1. These mutations abolish the cell death triggering activity of the full-length protein indicating strong selection for loss of function of this effector, which was previously considered a virulence factor. Two non-synonymous mutations in the flagellin-encoding gene fliC allowed identifying a new microbe associated molecular pattern (MAMP) in a region distinct from the known MAMP flg22. Interestingly, the ancestral allele of this MAMP induces a stronger tomato immune response than the derived alleles. The ancestral allele has largely disappeared from today's Pto populations suggesting that flagellin-triggered immunity limits pathogen fitness even in highly virulent pathogens. An additional non-synonymous mutation was identified in flg22 in South American isolates. Therefore, MAMPs are more variable than expected differing even between otherwise almost identical isolates of the same pathogen strain.


Asunto(s)
Interacciones Huésped-Patógeno , Enfermedades de las Plantas/microbiología , Pseudomonas syringae/genética , Pseudomonas syringae/patogenicidad , Solanum lycopersicum/microbiología , Factores de Virulencia/genética , Alelos , Cartilla de ADN , Europa (Continente) , Flagelina/genética , Flagelina/metabolismo , Regulación de la Expresión Génica de las Plantas , Sitios Genéticos , Marcadores Genéticos , Mutación , América del Norte , Filogeografía , Inmunidad de la Planta , Hojas de la Planta , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN
11.
BMC Genomics ; 12: 146, 2011 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-21396108

RESUMEN

BACKGROUND: Bacterial spot of tomato and pepper is caused by four Xanthomonas species and is a major plant disease in warm humid climates. The four species are distinct from each other based on physiological and molecular characteristics. The genome sequence of strain 85-10, a member of one of the species, Xanthomonas euvesicatoria (Xcv) has been previously reported. To determine the relationship of the four species at the genome level and to investigate the molecular basis of their virulence and differing host ranges, draft genomic sequences of members of the other three species were determined and compared to strain 85-10. RESULTS: We sequenced the genomes of X. vesicatoria (Xv) strain 1111 (ATCC 35937), X. perforans (Xp) strain 91-118 and X. gardneri (Xg) strain 101 (ATCC 19865). The genomes were compared with each other and with the previously sequenced Xcv strain 85-10. In addition, the molecular features were predicted that may be required for pathogenicity including the type III secretion apparatus, type III effectors, other secretion systems, quorum sensing systems, adhesins, extracellular polysaccharide, and lipopolysaccharide determinants. Several novel type III effectors from Xg strain 101 and Xv strain 1111 genomes were computationally identified and their translocation was validated using a reporter gene assay. A homolog to Ax21, the elicitor of XA21-mediated resistance in rice, and a functional Ax21 sulfation system were identified in Xcv. Genes encoding proteins with functions mediated by type II and type IV secretion systems have also been compared, including enzymes involved in cell wall deconstruction, as contributors to pathogenicity. CONCLUSIONS: Comparative genomic analyses revealed considerable diversity among bacterial spot pathogens, providing new insights into differences and similarities that may explain the diverse nature of these strains. Genes specific to pepper pathogens, such as the O-antigen of the lipopolysaccharide cluster, and genes unique to individual strains, such as novel type III effectors and bacteriocin genes, have been identified providing new clues for our understanding of pathogen virulence, aggressiveness, and host preference. These analyses will aid in efforts towards breeding for broad and durable resistance in economically important tomato and pepper cultivars.


Asunto(s)
Capsicum/microbiología , Hibridación Genómica Comparativa , Genoma Bacteriano , Xanthomonas/genética , Sistemas de Secreción Bacterianos/genética , Biología Computacional , ADN Bacteriano/genética , Genes Bacterianos , Familia de Multigenes , Filogenia , Enfermedades de las Plantas/microbiología , Análisis de Secuencia de ADN , Xanthomonas/patogenicidad
12.
BMC Genomics ; 11: 238, 2010 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-20388224

RESUMEN

BACKGROUND: Citrus canker is a disease that has severe economic impact on the citrus industry worldwide. There are three types of canker, called A, B, and C. The three types have different phenotypes and affect different citrus species. The causative agent for type A is Xanthomonas citri subsp. citri, whose genome sequence was made available in 2002. Xanthomonas fuscans subsp. aurantifolii strain B causes canker B and Xanthomonas fuscans subsp. aurantifolii strain C causes canker C. RESULTS: We have sequenced the genomes of strains B and C to draft status. We have compared their genomic content to X. citri subsp. citri and to other Xanthomonas genomes, with special emphasis on type III secreted effector repertoires. In addition to pthA, already known to be present in all three citrus canker strains, two additional effector genes, xopE3 and xopAI, are also present in all three strains and are both located on the same putative genomic island. These two effector genes, along with one other effector-like gene in the same region, are thus good candidates for being pathogenicity factors on citrus. Numerous gene content differences also exist between the three cankers strains, which can be correlated with their different virulence and host range. Particular attention was placed on the analysis of genes involved in biofilm formation and quorum sensing, type IV secretion, flagellum synthesis and motility, lipopolysacharide synthesis, and on the gene xacPNP, which codes for a natriuretic protein. CONCLUSION: We have uncovered numerous commonalities and differences in gene content between the genomes of the pathogenic agents causing citrus canker A, B, and C and other Xanthomonas genomes. Molecular genetics can now be employed to determine the role of these genes in plant-microbe interactions. The gained knowledge will be instrumental for improving citrus canker control.


Asunto(s)
Citrus/microbiología , Genoma Bacteriano/genética , Genómica , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Xanthomonas/genética , Agrobacterium tumefaciens/genética , Biopelículas , Flagelos/genética , Genes Bacterianos/genética , Familia de Multigenes , Antígenos O/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Percepción de Quorum/genética , Ralstonia solanacearum/genética , Especificidad de la Especie , Xanthomonas/citología , Xanthomonas/metabolismo , Xanthomonas/fisiología
13.
Phytopathology ; 100(3): 208-15, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20128693

RESUMEN

Although there are adequate DNA sequence differences among plant-associated and plant-pathogenic bacteria to facilitate molecular approaches for their identification, identification at a taxonomic level that is predictive of their phenotype is a challenge. The problem is the absence of a taxonomy that describes genetic variation at a biologically relevant resolution and of a database containing reference strains for comparison. Moreover, molecular evolution, population genetics, ecology, and epidemiology of many plant-pathogenic and plant-associated bacteria are still poorly understood. To address these challenges, a database with web interface was specifically designed for plant-associated and plant-pathogenic microorganisms. The Plant-Associated Microbes Database (PAMDB) comprises, thus far, data from multilocus sequence typing and analysis (MLST/MLSA) studies of Acidovorax citrulli, Pseudomonas syringae, Ralstonia solanacearum, and Xanthomonas spp. Using data deposited in PAMDB, a robust phylogeny of Xanthomonas axonopodis and related bacteria has been inferred, and the diversity existing in the Xanthomonas genus and in described Xanthomonas spp. has been compared with the diversity in P. syringae and R. solanacearum. Moreover, we show how PAMDB makes it easy to distinguish between different pathogens that cause almost identical diseases. The scalable design of PAMDB will make it easy to add more plant pathogens in the future.


Asunto(s)
Bacterias/genética , Bases de Datos Factuales , Internet , Enfermedades de las Plantas/microbiología , Plantas/microbiología , Biología Computacional , Filogenia
14.
J Fungi (Basel) ; 6(4)2020 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-33255176

RESUMEN

Most people infected with the fungus Paracoccidioides spp. do not get sick, but approximately 5% develop paracoccidioidomycosis. Understanding how host immunity determinants influence disease development could lead to novel preventative or therapeutic strategies; hence, we used two mouse strains that are resistant (A/J) or susceptible (B10.A) to P. brasiliensis to study how dendritic cells (DCs) respond to the infection. RNA sequencing analysis showed that the susceptible strain DCs remodeled their transcriptomes much more intensely than those from the resistant strain, agreeing with a previous model of more intense innate immunity response in the susceptible strain. Contrastingly, these cells also repress genes/processes involved in antigen processing and presentation, such as lysosomal activity and autophagy. After the interaction with P. brasiliensis, both DCs and macrophages from the susceptible mouse reduced the autophagy marker LC3-II recruitment to the fungal phagosome compared to the resistant strain cells, confirming this pathway's repression. These results suggest that impairment in antigen processing and presentation processes might be partially responsible for the inefficient activation of the adaptive immune response in this model.

15.
PLoS One ; 15(11): e0241546, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33151992

RESUMEN

Here we present and analyze the complete genome of Alcaligenes faecalis strain Mc250 (Mc250), a bacterium isolated from the roots of Mimosa calodendron, an endemic plant growing in ferruginous rupestrian grasslands in Minas Gerais State, Brazil. The genome has 4,159,911 bp and 3,719 predicted protein-coding genes, in a single chromosome. Comparison of the Mc250 genome with 36 other Alcaligenes faecalis genomes revealed that there is considerable gene content variation among these strains, with the core genome representing only 39% of the protein-coding gene repertoire of Mc250. Mc250 encodes a complete denitrification pathway, a network of pathways associated with phenolic compounds degradation, and genes associated with HCN and siderophores synthesis; we also found a repertoire of genes associated with metal internalization and metabolism, sulfate/sulfonate and cysteine metabolism, oxidative stress and DNA repair. These findings reveal the genomic basis for the adaptation of this bacterium to the harsh environmental conditions from where it was isolated. Gene clusters associated with ectoine, terpene, resorcinol, and emulsan biosynthesis that can confer some competitive advantage were also found. Experimental results showed that Mc250 was able to reduce (~60%) the virulence phenotype of the plant pathogen Xanthomonas citri subsp. citri when co-inoculated in Citrus sinensis, and was able to eradicate 98% of juveniles and stabilize the hatching rate of eggs to 4% in two species of agricultural nematodes. These results reveal biotechnological potential for the Mc250 strain and warrant its further investigation as a biocontrol and plant growth-promoting bacterium.


Asunto(s)
Alcaligenes faecalis/genética , Citrus/microbiología , Genoma Bacteriano , Secuenciación Completa del Genoma , Alcaligenes faecalis/efectos de los fármacos , Animales , Antibacterianos/farmacología , Secuencia de Bases , Citrus/parasitología , ADN Circular/genética , Farmacorresistencia Microbiana/efectos de los fármacos , Farmacorresistencia Microbiana/genética , Islas Genómicas/genética , Hierro/metabolismo , Metales Pesados/toxicidad , Mimosa/microbiología , Nematodos/fisiología , Fenoles/metabolismo , Filogenia
16.
J Bacteriol ; 191(11): 3569-79, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19346311

RESUMEN

The facultative intracellular bacterial pathogen Brucella infects a wide range of warm-blooded land and marine vertebrates and causes brucellosis. Currently, there are nine recognized Brucella species based on host preferences and phenotypic differences. The availability of 10 different genomes consisting of two chromosomes and representing six of the species allowed for a detailed comparison among themselves and relatives in the order Rhizobiales. Phylogenomic analysis of ortholog families shows limited divergence but distinct radiations, producing four clades as follows: Brucella abortus-Brucella melitensis, Brucella suis-Brucella canis, Brucella ovis, and Brucella ceti. In addition, Brucella phylogeny does not appear to reflect the phylogeny of Brucella species' preferred hosts. About 4.6% of protein-coding genes seem to be pseudogenes, which is a relatively large fraction. Only B. suis 1330 appears to have an intact beta-ketoadipate pathway, responsible for utilization of plant-derived compounds. In contrast, this pathway in the other species is highly pseudogenized and consistent with the "domino theory" of gene death. There are distinct shared anomalous regions (SARs) found in both chromosomes as the result of horizontal gene transfer unique to Brucella and not shared with its closest relative Ochrobactrum, a soil bacterium, suggesting their acquisition occurred in spite of a predominantly intracellular lifestyle. In particular, SAR 2-5 appears to have been acquired by Brucella after it became intracellular. The SARs contain many genes, including those involved in O-polysaccharide synthesis and type IV secretion, which if mutated or absent significantly affect the ability of Brucella to survive intracellularly in the infected host.


Asunto(s)
Brucella/genética , Transferencia de Gen Horizontal/genética , Genoma Bacteriano/genética , Adipatos/metabolismo , Brucella/clasificación , Brucella/fisiología , Cromosomas Bacterianos/genética , Biología Computacional , Modelos Genéticos , Filogenia , Seudogenes/genética , Transducción de Señal/genética
17.
J Bacteriol ; 191(8): 2501-11, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19251847

RESUMEN

The family Rhizobiaceae contains plant-associated bacteria with critical roles in ecology and agriculture. Within this family, many Rhizobium and Sinorhizobium strains are nitrogen-fixing plant mutualists, while many strains designated as Agrobacterium are plant pathogens. These contrasting lifestyles are primarily dependent on the transmissible plasmids each strain harbors. Members of the Rhizobiaceae also have diverse genome architectures that include single chromosomes, multiple chromosomes, and plasmids of various sizes. Agrobacterium strains have been divided into three biovars, based on physiological and biochemical properties. The genome of a biovar I strain, A. tumefaciens C58, has been previously sequenced. In this study, the genomes of the biovar II strain A. radiobacter K84, a commercially available biological control strain that inhibits certain pathogenic agrobacteria, and the biovar III strain A. vitis S4, a narrow-host-range strain that infects grapes and invokes a hypersensitive response on nonhost plants, were fully sequenced and annotated. Comparison with other sequenced members of the Alphaproteobacteria provides new data on the evolution of multipartite bacterial genomes. Primary chromosomes show extensive conservation of both gene content and order. In contrast, secondary chromosomes share smaller percentages of genes, and conserved gene order is restricted to short blocks. We propose that secondary chromosomes originated from an ancestral plasmid to which genes have been transferred from a progenitor primary chromosome. Similar patterns are observed in select Beta- and Gammaproteobacteria species. Together, these results define the evolution of chromosome architecture and gene content among the Rhizobiaceae and support a generalized mechanism for second-chromosome formation among bacteria.


Asunto(s)
ADN Bacteriano/genética , Evolución Molecular , Genoma Bacteriano , Rhizobium/genética , Biología Computacional/métodos , Secuencia Conservada , ADN Bacteriano/química , Orden Génico , Datos de Secuencia Molecular , Filogenia , Análisis de Secuencia de ADN , Sintenía
18.
J Bacteriol ; 191(14): 4534-45, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19429624

RESUMEN

Azotobacter vinelandii is a soil bacterium related to the Pseudomonas genus that fixes nitrogen under aerobic conditions while simultaneously protecting nitrogenase from oxygen damage. In response to carbon availability, this organism undergoes a simple differentiation process to form cysts that are resistant to drought and other physical and chemical agents. Here we report the complete genome sequence of A. vinelandii DJ, which has a single circular genome of 5,365,318 bp. In order to reconcile an obligate aerobic lifestyle with exquisitely oxygen-sensitive processes, A. vinelandii is specialized in terms of its complement of respiratory proteins. It is able to produce alginate, a polymer that further protects the organism from excess exogenous oxygen, and it has multiple duplications of alginate modification genes, which may alter alginate composition in response to oxygen availability. The genome analysis identified the chromosomal locations of the genes coding for the three known oxygen-sensitive nitrogenases, as well as genes coding for other oxygen-sensitive enzymes, such as carbon monoxide dehydrogenase and formate dehydrogenase. These findings offer new prospects for the wider application of A. vinelandii as a host for the production and characterization of oxygen-sensitive proteins.


Asunto(s)
Azotobacter vinelandii/genética , ADN Bacteriano/química , ADN Bacteriano/genética , Genoma Bacteriano , Análisis de Secuencia de ADN , Proteínas Bacterianas/genética , Secuencia de Bases , Metabolismo/genética , Datos de Secuencia Molecular , Filogenia
19.
Mol Plant Microbe Interact ; 22(1): 52-62, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19061402

RESUMEN

Diverse gene products including phytotoxins, pathogen-associated molecular patterns, and type III secreted effectors influence interactions between Pseudomonas syringae strains and plants, with additional yet uncharacterized factors likely contributing as well. Of particular interest are those interactions governing pathogen-host specificity. Comparative genomics of closely related pathogens with different host specificity represents an excellent approach for identification of genes contributing to host-range determination. A draft genome sequence of Pseudomonas syringae pv. tomato T1, which is pathogenic on tomato but nonpathogenic on Arabidopsis thaliana, was obtained for this purpose and compared with the genome of the closely related A. thaliana and tomato model pathogen P. syringae pv. tomato DC3000. Although the overall genetic content of each of the two genomes appears to be highly similar, the repertoire of effectors was found to diverge significantly. Several P. syringae pv. tomato T1 effectors absent from strain DC3000 were confirmed to be translocated into plants, with the well-studied effector AvrRpt2 representing a likely candidate for host-range determination. However, the presence of avrRpt2 was not found sufficient to explain A. thaliana resistance to P. syringae pv. tomato T1, suggesting that other effectors and possibly type III secretion system-independent factors also play a role in this interaction.


Asunto(s)
Proteínas Bacterianas/genética , Genoma Bacteriano/genética , Pseudomonas syringae/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/microbiología , ADN Bacteriano/química , ADN Bacteriano/genética , Genómica/métodos , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/microbiología , Modelos Genéticos , Pseudomonas syringae/clasificación , Análisis de Secuencia de ADN , Especificidad de la Especie
20.
Vet Microbiol ; 239: 108482, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31759775

RESUMEN

Mycobacterium bovis (M. bovis) is the causative agent of bovine tuberculosis, a chronic infectious disease that can affect cattle, other domesticated species, wild animals and humans. This disease produces important economic losses worldwide. Two M. bovis strains (04-303 and 534) have been isolated in Argentina. Whereas the 04-303 strain was isolated from a wild boar, the 534 strain was obtained from cattle. In a previous study, six weeks after infection, the 04-303 strain induced 100% mortality in mice. By contrast, mice infected with the 534 strain survived, with limited tissue damage, after four months. In this study we compared all predictive proteins encoded in both M. bovis genomes. The comparative analysis revealed 141 polymorphic proteins between both strains. From these proteins, nine virulence proteins showed polymorphisms in 04-303, whereas five did it in the 534 strain. Remarkably, both strains contained a high level of polymorphism in proteins related to phthiocerol dimycocerosate (PDIM) synthesis or transport. Further experimental evidence indicated that only mutations in the 534 strain have an impact on PDIM synthesis. The observed reduction in PDIM content in the 534 strain, together with its low capacity to induce phagosome arrest, may be associated with the reported deficiency of this strain to replicate and survive inside bovine macrophages. The findings of this study could contribute to a better understanding of pathogenicity and virulence aspects of M. bovis, which is essential for further studies aiming at developing new vaccines and diagnostic techniques for bovines.


Asunto(s)
Mycobacterium bovis/genética , Mycobacterium bovis/patogenicidad , Tuberculosis/microbiología , Virulencia/genética , Animales , Bovinos , Ratones , Mutación , Mycobacterium bovis/clasificación , Análisis de Supervivencia , Sus scrofa/microbiología , Tuberculosis/mortalidad , Tuberculosis Bovina/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA