Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Int J Mol Sci ; 25(14)2024 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-39063206

RESUMEN

Today, plastic pollution is one of the biggest threats to the environment and public health. In the tissues of exposed species, micro- and nano-fragments accumulate, leading to genotoxicity, altered metabolism, and decreased lifespan. A model to investigate the genotoxic and tumor-promoting potential of nanoplastics (NPs) is Drosophila melanogaster. Here we tested polystyrene, which is commonly used in food packaging, is not well recycled, and makes up at least 30% of landfills. In order to investigate the biological effects and carcinogenic potential of 100 µm polystyrene nanoparticles (PSNPs), we raised Oregon [R] wild-type flies on contaminated food. After prolonged exposure, fluorescent PSNPs accumulated in the gut and fat bodies. Furthermore, PSNP-fed flies showed considerable alterations in weight, developmental time, and lifespan, as well as a compromised ability to recover from starvation. Additionally, we noticed a decrease in motor activity in DNAlig4 mutants fed with PSNPs, which are known to be susceptible to dietary stressors. A qPCR molecular investigation of the larval intestines revealed a markedly elevated expression of the genes drice and p53, suggesting a response to cell damage. Lastly, we used warts-defective mutants to assess the carcinogenic potential of PSNPs and discovered that exposed flies had more aberrant masses than untreated ones. In summary, our findings support the notion that ingested nanopolystyrene triggers metabolic and genetic modifications in the exposed organisms, eventually delaying development and accelerating death and disease.


Asunto(s)
Drosophila melanogaster , Nanopartículas , Poliestirenos , Animales , Drosophila melanogaster/efectos de los fármacos , Drosophila melanogaster/genética , Poliestirenos/toxicidad , Nanopartículas/toxicidad , Nanopartículas/química , Carcinógenos/toxicidad , Larva/efectos de los fármacos , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Longevidad/efectos de los fármacos , Cuerpo Adiposo/metabolismo , Cuerpo Adiposo/efectos de los fármacos
2.
Genes (Basel) ; 14(6)2023 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-37372418

RESUMEN

The evaluation of the integrity and quantity of DNA extracted from archaeological human remains is a fundamental step before using the latest generation sequencing techniques in the study of evolutionary processes. Ancient DNA is highly fragmented and chemically modified; therefore, the present study aims to identify indices that can allow the identification of potentially amplifiable and sequenceable DNA samples, reducing failures and research costs. Ancient DNA was extracted from five human bone remains from the archaeological site of Amiternum L'Aquila, Italy dating back to the 9th-12th century and was compared with standard DNA fragmented by sonication. Given the different degradation kinetics of mitochondrial DNA compared to nuclear DNA, the mitochondrially encoded 12s RNA and 18s ribosomal RNA genes were taken into consideration; fragments of various sizes were amplified in qPCR and the size distribution was thoroughly investigated. DNA damage degree was evaluated by calculating damage frequency (λ) and the ratio between the amount of the different fragments and that of the smallest fragment (Q). The results demonstrate that both indices were found to be suitable for identifying, among the samples tested, those less damaged and suitable for post-extraction analysis; mitochondrial DNA is more damaged than nuclear, in fact, amplicons up to 152 bp and 253 bp, respectively are obtained.


Asunto(s)
Restos Mortales , ADN Antiguo , Humanos , Italia , Huesos , ADN Mitocondrial/genética
3.
Nanomaterials (Basel) ; 13(4)2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36839124

RESUMEN

Air pollution in the urban environment is a topical subject. Aero-suspended particles can cause respiratory diseases in humans, ranging from inflammation to asthma and cancer. One of the components that is most prevalent in particulate matter (PM) in urban areas is the set of tire microparticles (1-20 µm) and nanoparticles (<1 µm) that are formed due to the friction of wheels with asphalt and are increased in slow-moving areas that involve a lot of braking actions. In this work, we studied the effect that microparticles generated from passenger tires (PTWP, passenger tire wear particles) have in vitro on murine macrophages cells RAW 264.7 at two concentrations of 25 and 100 µg/mL, for 24 and 48 h. In addition to the chemical characterization of the material and morphological characterization of the treated cells by transmission electron microscopy, gene expression analysis with RT-PCR and active protein analysis with Western blotting were performed. Growth curves were obtained, and the genotoxic effect was evaluated with a comet assay. The results indicate that initially, an induction of the apoptotic process is observable, but this is subsequently reversed by Bcl2. No genotoxic damage is present, but mild cellular abnormalities were observed in the treated cells.

4.
Artículo en Inglés | MEDLINE | ID: mdl-36360633

RESUMEN

Humans have always been exposed to tiny particles via dust storms, volcanic ash, and other natural processes, and our bodily systems are well adapted to protect us from these potentially harmful external agents. However, technological advancement has dramatically increased the production of nanometer-sized particles or nanoparticles (NPs), and many epidemiological studies have confirmed a correlation between NP exposure and the onset of cardiovascular diseases and various cancers. Among the adverse effects on human health, in recent years, potential hazards of nanomaterials on female reproductive organs have received increasing concern. Several animal and human studies have shown that NPs can translocate to the ovary, uterus, and placenta, thus negatively impacting female reproductive potential and fetal health. However, NPs are increasingly being used for therapeutic purposes as tools capable of modifying the natural history of degenerative diseases. Here we briefly summarize the toxic effects of few but widely diffused NPs on female fertility and also the use of nanotechnologies as a new molecular approach for either specific pathological conditions, such as ovarian cancer and infertility, or the cryopreservation of gametes and embryos.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Neoplasias , Embarazo , Animales , Femenino , Humanos , Nanopartículas/toxicidad , Ovario , Reproducción , Células Germinativas
5.
Cells ; 11(2)2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-35053344

RESUMEN

Indoor air pollutants (IAP), which can pose a serious risk to human health, include biological pollutants, nitric oxide (NO), nitrogen dioxide (NO2), volatile organic compounds (VOC), sulfur dioxide (SO2), carbon monoxide (CO), carbon dioxide (CO2), silica, metals, radon, and particulate matter (PM). The aim of our work is to conduct a multidisciplinary study of fine silica particles (<2.5 µm) in the presence or absence of ozone (O3), and evaluate their potential cytotoxicity using MTS, micronucleus, and the comet test in two cell lines. We analyzed A549 (human basal alveolar epithelial cell adenocarcinoma) and Hs27 (human normal fibroblasts) exposed to dynamic conditions by an IRC simulator under ozone flow (120 ppb) and in the presence of silica particles (40 µg/h). The viability of A549 and Hs27 cells at 48 and 72 h of exposure to silica or silica/ozone decreases, except at 72 h in Hs27 treated with silica/ozone. The micronucleus and comet tests showed a significant increase in the number of micronuclei and the % of DNA in the queue, compared to the control, in both lines in all treatments, even if in different cell times/types. We found that silica alone or with more O3 causes more pronounced genotoxic effects in A549 tumor cells than in normal Hs27 fibroblasts.


Asunto(s)
Adenocarcinoma/patología , Epitelio/patología , Fibroblastos/patología , Modelos Biológicos , Mutágenos/toxicidad , Ozono/toxicidad , Dióxido de Silicio/toxicidad , Línea Celular Tumoral , Ensayo Cometa , Epitelio/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Humanos , Pruebas de Micronúcleos
6.
PLoS One ; 16(7): e0255120, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34297768

RESUMEN

The potential risks of environmental nanoparticles (NPs), in particular Polystyrene Nanoparticles (PNPs), is an emerging problem; specifically, the interaction of PNPs with intestinal cells has not been characterized so far. The mechanism by which polystyrene particles are transferred to humans has not yet been clarified, whether directly through ingestion from contaminated food. We evaluated the interaction between PNPs and colorectal adenocarcinoma cells (HCT116). Cells were exposed to different concentrations of PNPs, metabolic activity and the consequent cytotoxic potential were assessed through viability test; we evaluated the PNP genotoxic potential through the Cytokinesis-Block Micronucleus cytome (CBMN cyt) assay. Finally, we detected Reactive Oxygen Species (ROS) production after NPs exposure and performed Western Blot analysis to analyze the enzymes (SOD1, SOD2, Catalase, Glutathione Peroxidase) involved in the cell detoxification process that comes into play during the cell-PNPs interaction. This work analyzes the cyto and genotoxicity of PNPs in the colorectal HCT116 cell line, in particular the potential damage from oxidative stress produced by PNPs inside the cells related to the consequent nuclear damage. Our results show moderate toxicity of PNPs both in terms of ROS production and DNA damage. Further studies will be needed on different cell lines to have a more complete picture of the impact of environmental pollution on human health in terms of PNPs cytotoxicity and genotoxicity.


Asunto(s)
Mutágenos/toxicidad , Nanopartículas/toxicidad , Oxidantes/toxicidad , Poliestirenos/toxicidad , Daño del ADN , Células HCT116 , Humanos , Mutágenos/química , Nanopartículas/química , Oxidantes/química , Estrés Oxidativo
7.
Nanomaterials (Basel) ; 9(9)2019 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-31514347

RESUMEN

Several studies have provided information on environmental nanoplastic particles/debris, but the in vitro cyto-genotoxicity is still insufficiently characterized. The aim of this study is to analyze the effects of polystyrene nanoparticles (PNPs) in the Hs27 cell line. The viability of Hs27 cells was determined following exposure at different time windows and PNP concentrations. The genotoxic effects of the PNPs were evaluated by the cytokinesis-block micronucleus (CBMN) assay after exposure to PNPs. We performed ROS analysis on HS27 cells to detect reactive oxygen species at different times and treatments in the presence of PNPs alone and PNPs added to the Crocus sativus L. extract. The different parameters of the CBMN test showed DNA damage, resulting in the increased formation of micronuclei and nuclear buds. We noted a greater increase in ROS production in the short treatment times, in contrast, PNPs added to Crocus sativus showed the ability to extract, thus reducing ROS production. Finally, the SEM-EDX analysis showed a three-dimensional structure of the PNPs with an elemental composition given by C and O. This work defines PNP toxicity resulting in DNA damage and underlines the emerging problem of polystyrene nanoparticles, which extends transversely from the environment to humans; further studies are needed to clarify the internalization process.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA