Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Biol Rep ; 50(6): 5165-5176, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37119416

RESUMEN

BACKGROUND: Genome editing technology has become one of the excellent tools for precise plant breeding to develop novel plant germplasm. The Tobacco mosaic virus (TMV) is the most prominent pathogen that infects several Solanaceae plants, such as tobacco, tomato, and capsicum, which requires critical host factors for infection and replication of its genomic RNA in the host. The Tobamovirus multiplication (TOM) genes, such as TOM1, TOM2A, TOM2B, and TOM3, are involved in the multiplication of Tobamoviruses. TOM1 is a transmembrane protein necessary for efficient TMV multiplication in several plant species. The TOM genes are crucial recessive resistance genes that act against the tobamoviruses in various plant species. METHODS AND RESULTS: The single guided RNA (sgRNA) was designed to target the first exon of the NtTOM1 gene and cloned into the pHSE401 vector. The pHSE401-NtTOM1 vector was introduced into Agrobacterium tumefaciens strain LBA4404 and then transformed into tobacco plants. The analysis on T0 transgenic plants showed the presence of the hptII and Cas9 transgenes. The sequence analysis of the NtTOM1 from T0 plants showed the indels. Genotypic evaluation of the NtTOM1 mutant lines displayed the stable inheritance of the mutations in the subsequent generations of tobacco plants. The NtTOM1 mutant lines successfully conferred resistance to TMV. CONCLUSIONS: CRISPR/Cas genome editing is a reliable tool for investigating gene function and precision breeding across different plant species, especially the species in the Solanaceae family.


Asunto(s)
Virus del Mosaico del Tabaco , Tobamovirus , Virus del Mosaico del Tabaco/genética , Sistemas CRISPR-Cas/genética , Nicotiana/genética , Tobamovirus/genética , Plantas Modificadas Genéticamente/genética , ARN
2.
Plant Cell Rep ; 42(5): 909-919, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36894686

RESUMEN

KEYMESSAGE: CbSE overexpression increased stigmasterol levels and altered plant morphology. The genes upstream and downstream of CbSE were found to be upregulated, which confirms its regulatory role in the saponin biosynthetic pathway. Chlorophytum borivilianum is a high-value medicinal plant with many promising preclinical applications that include saponins as a major active ingredient. Squalene epoxidase (SE) is one of the major rate-limiting enzymes of the saponin biosynthetic pathway. Here, we functionally characterized C. borivilianum SE (CbSE) by over-expressing heterologously in Nicotiana tabacum. The heterologous expression of CbSE resulted in stunted pant growth with altered leaf and flower morphology. Next, RT-qPCR analysis of transgenic plants overexpressing CbSE revealed increased expression levels of Cycloartenol synthase (CAS), Beta amyrin synthase (ßAS), and cytochrome P450 monooxygenase 51 (CYP51) (Cytochrome P450), which encode key enzymes for triterpenoid and phytosterol biosynthesis in C. borivilianum. Further, Methyl Jasmonate (MeJa) treatment upregulated Squalene synthase (SQS), SE, and Oxidosqualene cyclases (OSCs) to a significant level. GC-MS analysis of the leaf and hairy roots of the transformants showed an increased stigmasterol content (0.5-1.0 fold) compared to wild type (WT) plants. These results indicate that CbSE is a rate-limiting gene, which encodes an efficient enzyme responsible for phytosterol and triterpenoid production in C. borivilianum.


Asunto(s)
Fitosteroles , Saponinas , Triterpenos , Nicotiana/genética , Nicotiana/metabolismo , Estigmasterol , Escualeno-Monooxigenasa/genética , Escualeno-Monooxigenasa/metabolismo , Triterpenos/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Regulación de la Expresión Génica de las Plantas
3.
Mol Biol Rep ; 49(8): 8025-8035, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35294703

RESUMEN

Myo-inositol is one of the most abundant form of inositol. The myo-inositol (MI) serves as substrate to diverse biosynthesis pathways and hence it is conserved across life forms. The biosynthesis of MI is well studied in animals. Beyond biosynthesis pathway, implications of MI pathway and enzymes hold potential implications in plant physiology and crop improvement. Myo-inositol oxygenase (MIOX) enzyme catabolize MI into D-glucuronic acid (D-GlcUA). The MIOX enzyme family is well studied across few plants. More recently, the MI associated pathway's crosstalk with other important biosynthesis and stress responsive pathways in plants has drawn attention. The overall outcome from different plant species studied so far are very suggestive that MI derivatives and associated pathways could open new directions to explore stress responsive novel metabolic networks. There are evidences for upregulation of MI metabolic pathway genes, specially MIOX under different stress condition. We also found MIOX genes getting differentially expressed according to developmental and stress signals in Arabidopsis and wheat. In this review we try to highlight the missing links and put forward a tailored view over myo-inositol oxidation pathway and MIOX proteins.


Asunto(s)
Arabidopsis , Inositol-Oxigenasa , Animales , Arabidopsis/metabolismo , Vías Biosintéticas , Inositol/metabolismo , Inositol-Oxigenasa/genética , Inositol-Oxigenasa/metabolismo , Oxidación-Reducción
4.
J Plant Res ; 134(3): 475-495, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33616799

RESUMEN

Climate change, malnutrition, and food insecurity are the inevitable challenges being faced by the agriculture sector today. Plants are susceptible to extreme temperatures during the crucial phases of flowering and seed development, and elevated carbon levels also lead to yield losses. Productivity is also affected by floods and droughts. Therefore, increasing plant yield and stress tolerance are the priorities to be met through novel biotechnological interventions. The contributions of NAC genes towards enhancing plant survivability under stress is well known. Here we focus on the potential of NAC genes in the regulation of abiotic stress tolerance, secondary cell wall synthesis, lateral root development, yield potential, seed size and biomass, ROS signaling, leaf senescence, and programmed cell death. Once naturally tolerant candidate NAC genes have been identified, and the nature of their association with growth and fitness against multi-environmental stresses has been determined, they can be exploited for building inherent tolerance in future crops via transgenic technologies. An update on the latest developments is provided in this review, which summarizes the current understanding of the roles of NAC in the establishment of various stress-adaptive mechanisms in model and food crop plants.


Asunto(s)
Proteínas de Plantas , Factores de Transcripción , Sequías , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Estrés Fisiológico , Factores de Transcripción/genética
5.
Metab Eng ; 59: 76-86, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32006663

RESUMEN

Banana is one of the most economically important fruit crops worldwide. Genetic improvement in banana is a challenging task due to its parthenocarpic nature and triploid genome. Genetic modification of crops via the CRISPR/Cas9 module has emerged as a promising tool to develop important traits. In the present work, a CRISPR/Cas9-based approach was used to develop the ß-carotene-enriched Cavendish banana cultivar (cv.) Grand Naine (AAA genome). The fifth exon of the lycopene epsilon-cyclase (LCYε) gene was targeted. The targeting specificity of the designed guide-RNA was also tested by its ability to create indels in the LCYε gene at the A genome of cv. Rasthali (AAB genome). Sequence analysis revealed multiple types of indels in the genomic region of Grand Naine LCYε (GN-LCYε). Metabolic profiling of the fruit pulp of selected edited lines showed enhanced accumulation of ß-carotene content up to 6-fold (~24 µg/g) compared with the unedited plants. These lines also showed either an absence or a drastic reduction in the levels of lutein and α-carotene, suggesting metabolic reprogramming, without any significant effect on the agro-morphological parameters. In addition, differential expression of carotenoid pathway genes was observed in the edited lines in comparison to unedited plants. Overall, this is the first report in banana to improve nutritional trait by using a precise genome editing approach.


Asunto(s)
Sistemas CRISPR-Cas , Frutas , Edición Génica , Liasas Intramoleculares , Musa , Proteínas de Plantas , beta Caroteno/biosíntesis , Frutas/genética , Frutas/metabolismo , Liasas Intramoleculares/genética , Liasas Intramoleculares/metabolismo , Musa/genética , Musa/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , beta Caroteno/genética
6.
Biotechnol Lett ; 42(10): 2035-2047, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32681381

RESUMEN

The production of wheat is severely affected by abiotic stresses such as cold, drought, salinity, and high temperature. Although constitutive promoters are frequently used to regulate the expression of alien genes, these may lead to undesirable side-effects in transgenic plants. Therefore, identification and characterization of an inducible promoter that can express transgene only when exposed to stresses are of great importance in the genetic engineering of crop plants. Previous studies have indicated the abiotic stress-responsive behavior of myo-inositol oxygenase (MIOX) gene in different plants. Here, we isolated the MIOX gene promoter from wheat (TaMIOX). The in-silico analysis revealed the presence of various abiotic stress-responsive cis-elements in the promoter region. The TaMIOX promoter was fused with the UidA reporter gene and transformed into Arabidopsis thaliana. The T3 single-copy homozygous lines were analyzed for GUS activity using histochemical and fluorometric assays. Transcript expression of TaMIOX::UidA was significantly up-regulated by heat (five fold), cold (seven fold), and drought (five fold) stresses as compared to transgenic plants grown without stress-induced conditions. The CaMV35S::UidA plants showed very high GUS activity even in normal conditions. In contrast, the TaMIOX::UidA plants showed prominent GUS activity only in stress treatments (cold, heat, and drought), which suggests the inducible behavior of the TaMIOX promoter. The substrate myo-inositol feeding assay of TaMIOX::UidA plants showed lesser GUS activity as compared to plants treated in abiotic stress conditions. Results support that the TaMIOX promoter could be used as a potential candidate for conditional expression of the transgene in abiotic stress conditions.


Asunto(s)
Arabidopsis/genética , Inositol-Oxigenasa/genética , Proteínas de Plantas/genética , Regiones Promotoras Genéticas/genética , Estrés Fisiológico/genética , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Inositol-Oxigenasa/metabolismo , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Triticum/enzimología , Triticum/genética
7.
Funct Integr Genomics ; 18(1): 89-99, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29188477

RESUMEN

The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) has been reported for precise genome modification in many plants. In the current study, we demonstrate a successful mutation in phytoene desaturase (RAS-PDS) of banana cv. Rasthali using the CRISPR/Cas9 system. Two PDS genes were isolated from Rasthali (RAS-PDS1 and RAS-PDS2), and their protein sequence analysis confirmed that both PDS comprises conserved motifs for enzyme activity. Phylogenetic analysis of RAS-PDS1 and RAS-PDS2 revealed a close evolutionary relationship with other monocot species. The tissue-specific expression profile of RAS-PDS1 and RAS-PDS2 in Rasthali suggested differential regulation of the genes. A single 19-bp guide RNA (gRNA) was designed to target the conserved region of these two RAS-PDS and transformed with Cas9 in embryogenic cell suspension (ECS) cultures of cv. Rasthali. Complete albino and variegated phenotype were observed among regenerated plantlets. DNA sequencing of 13 plants confirmed the indels with 59% mutation frequency in RAS-PDS, suggesting activation of the non-homologous end-joining (NHEJ) pathway. The majority of mutations were either insertion (1-5) or deletion (1-4) of nucleotides near to protospacer adjacent motif (PAM). These mutations have created stop codons in RAS-PDS sequences which suggest premature termination of RAS-PDS protein synthesis. The decreased chlorophyll and total carotenoid contents were detected in mutant lines that revealed the functional disruption of both RAS-PDS genes. Our results demonstrate that genome editing through CRISPR/Cas9 can be applied as an efficient tool for banana genome modification.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica/métodos , Genoma de Planta , Musa/enzimología , Musa/genética , Oxidorreductasas/genética , Secuencia de Aminoácidos , Secuencia de Bases , Carotenoides/metabolismo , Clorofila/metabolismo , Especificidad de Órganos , Oxidorreductasas/antagonistas & inhibidores , Oxidorreductasas/metabolismo , Filogenia , Análisis de Secuencia de ADN , Homología de Secuencia
8.
J Exp Bot ; 67(14): 4379-89, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27342224

RESUMEN

Low phytic acid is a trait desired in cereal crops and can be achieved by manipulating the genes involved either in its biosynthesis or its transport in the vacuoles. Previously, we have demonstrated that the wheat TaABCC13 protein is a functional transporter, primarily involved in heavy metal tolerance, and a probable candidate gene to achieve low phytate wheat. In the current study, RNA silencing was used to knockdown the expression of TaABCC13 in order to evaluate its functional importance in wheat. Transgenic plants with significantly reduced TaABCC13 transcripts in either seeds or roots were selected for further studies. Homozygous RNAi lines K1B4 and K4G7 exhibited 34-22% reduction of the phytic acid content in the mature grains (T4 seeds). These transgenic lines were defective for spike development, as characterized by reduced grain filling and numbers of spikelets. The seeds of transgenic wheat had delayed germination, but the viability of the seedlings was unaffected. Interestingly, early emergence of lateral roots was observed in TaABCC13-silenced lines as compared to non-transgenic lines. In addition, these lines also had defects in metal uptake and development of lateral roots in the presence of cadmium stress. Our results suggest roles of TaABCC13 in lateral root initiation and enhanced sensitivity towards heavy metals. Taken together, these data demonstrate that wheat ABCC13 is functionally important for grain development and plays an important role during detoxification of heavy metals.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/fisiología , Ácido Fítico/metabolismo , Proteínas de Plantas/fisiología , Raíces de Plantas/crecimiento & desarrollo , Semillas/crecimiento & desarrollo , Triticum/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Cadmio/toxicidad , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/efectos de los fármacos , Triticum/efectos de los fármacos , Triticum/genética , Triticum/crecimiento & desarrollo
9.
Arch Virol ; 161(9): 2609-12, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27314944

RESUMEN

Begomoviruses are whitefly-transmitted, single-stranded DNA viruses that infect a variety of cultivated (crop) and non-cultivated (weed) plants. The present study identified a novel begomovirus and satellites (alpha- and betasatellite) in Senna occidentalis (syn. Cassia occidentalis) showing leaf curl symptoms. The begomovirus shared a maximum sequence identity of 88.6 % with french bean leaf curl virus (JQ866297), whereas the alphasatellite and the betasatellite shared identities of 98 % and 90 % with ageratum yellow vein India alphasatellite (LK054802) and papaya leaf curl betasatellite (HM143906), respectively. No other begomovirus or satellites were detected in the suspected plants. We propose to name the virus "senna leaf curl virus" (SenLCuV).


Asunto(s)
Begomovirus/genética , Enfermedades de las Plantas/virología , Senna/virología , Begomovirus/clasificación , Filogenia
11.
Physiol Mol Biol Plants ; 22(2): 261-9, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27436917

RESUMEN

Artemisia pallens is an important medicinal plant. In-vitro regeneration and multiplication of A. pallens have been established using attached cotyledons. Different growth regulators were considered for regeneration of multiple shoots. An average of 36 shoots per explants were obtained by culturing attached cotyledons on Murashige and Skoog's medium containing 2 mg/L BAP and 0.1 mg/L NAA, after 45 days. The shoots were rooted best on half Murashige and Skoog's medium with respect to media containing 1 mg/L IBA or 1 mg/L NAA. Different parameters such as type of bacterial strains, OD600 of bacterial culture, co-cultivation duration, concentration of acetosyringone and explants type were optimized for transient expression of the reporter gene. Agrobacterium tumefaciens harbouring pCambia1301 plasmid carrying ß-glucuronidase as a reporter gene and hygromycin phosphotransferase as plant selectable marker genes were used for genetic transformation of A. pallens. Hygromycin lethality test showed concentration of 15 mg/L were sufficient to inhibit the growth of attached cotyledons and multiple shoot buds of nontransgenics in selection media. Up to 83 % transient transformation was found when attached cotyledons were co-cultivated with Agrobacterium strain AGL1 for 2 days at 22 °C on shoot induction medium. The bacterial growth was eliminated by addition of cefotaxime (200 mg/L) in selection media. T0 transgenic plants were confirmed by GUS histochemical assay and further by polymerase chain reaction (PCR) using uidA and hpt gene specific primers. The study is useful in establishing technological improvement in A. pallens by genetic engineering.

12.
Arch Virol ; 160(5): 1219-28, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25772572

RESUMEN

Cotton leaf curl disease (CLCuD) is a serious disease of cotton on the Indian subcontinent. In the present study, three cotton leaf curl viruses, cotton leaf curl Burewala virus (CLCuBuV), cotton leaf curl Kokhran virus (CLCuKoV) and cotton leaf curl Multan virus (CLCuMV), and their associated satellites, cotton leaf curl Multan betasatellite (CLCuMB) and cotton leaf curl Multan alphasatellite (CLCuMA), were detected. CLCuBuV with either intact (CLCuBuV-1) or mutant (CLCuBuV-2) transcriptional activator protein (TrAP) were detected in different plants. Agroinoculation with CLCuBuV-1 or CLCuBuV-2 together with CLCuMB and CLCuMA, resulted in typical leaf curling and stunting of tobacco plants. Inoculation with CLCuKoV or an isolate of CLCuMV (CLCuMV-2), together with CLCuMB and CLCuMA, induced severe leaf curling, while the other isolate of CLCuMV (CLCuMV-1), which was recombinant in origin, showed mild leaf curling in tobacco. To investigate the effect of intact or mutant TrAP and also the recombination events, CLCuBuV-1, CLCuBuV-2, CLCuMV-1 or CLCuMV-2 together with the satellites (CLCuMA and CLCuMB) were transferred to cotton via whitefly-mediated transmission. Cotton plants containing CLCuBuV-1, CLCuBuV-2 or CLCuMV-2 together with satellites showed curling and stunting, whereas the plants having CLCuMV-1 and the satellites showed only mild and indistinguishable symptoms. CLCuBuV-1 (intact TrAP) showed severe symptoms in comparison to CLCuBuV-2 (mutant TrAP). The present study reveals that two types of CLCuBuV, one with an intact TrAP and the other with a mutant TrAP, exist in natural infection of cotton in India. Additionally, CLCuMuV-1, which has a recombinant origin, induces mild symptoms in comparison to the other CLCuMV isolates.


Asunto(s)
Begomovirus/aislamiento & purificación , ADN Satélite/aislamiento & purificación , Gossypium/virología , Enfermedades de las Plantas/virología , Transactivadores/metabolismo , Begomovirus/clasificación , Begomovirus/genética , Begomovirus/fisiología , Análisis por Conglomerados , ADN Satélite/clasificación , ADN Satélite/fisiología , ADN Viral/química , ADN Viral/genética , India , Datos de Secuencia Molecular , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Filogenia , Proteínas , Análisis de Secuencia de ADN , Homología de Secuencia , Nicotiana/virología , Transactivadores/genética , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
13.
J Adv Res ; 2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37730118

RESUMEN

INTRODUCTION: Members of the family Geminiviridae have been reported to infect either a monocot plant or a dicot plant, but not both. This study reports a geminivirus, Wheat Dwarf India Virus (WDIV), first identified in wheat, that is capable of infecting both monocot and dicot plants and acting as a viral vector. OBJECTIVES: This study was aimed at developing a broad host range viral vector system for reverse genetics and genome editing. METHODS: Here we used a wheat isolate of WDIV and Ageratum yellow leaf curl betasatellite (AYLCB) for infectivity assays and vector development. We performed Agrobacterium-mediated inoculation of WDIV and AYLCB in wheat, oat, barley, corn, soybean, and tobacco. To examine the potential of WDIV to act as a viral vector, we modified the WDIV genome and cloned DNA fragments of the phytoene desaturase (PDS) genes from wheat and tobacco, separately. For gene editing experiments, tobacco lines expressing Cas9 were infiltrated with a WDIV-based vector carrying gRNA targeting the PDS gene. RESULTS: About 80 to 90% of plants inoculated with infectious clones of WDIV alone or WDIV together with AYLCB showed mild symptoms, whereas some plants showed more prominent symptoms. WDIV and AYLCB were detected in the systemically infected leaves of all the plant species. Furthermore, the inoculation of the WDIV vector carrying PDS fragments induced silencing of the PDS gene in both wheat and tobacco plants. We also observed high-efficiency genome editing in the Cas9-expressing tobacco plants that were inoculated with WDIV vector-carrying gRNA. CONCLUSION: Detection of WDIV in naturally infected wheat, barley, and sugarcane in the field and its ability to systemically infect wheat, oat, barley, corn, soybean, and tobacco under laboratory conditions, provides compelling evidence that WDIV is the first geminivirus identified with the capability of infecting both monocot and dicot plant species. The wide host range of WDIV can be exploited for developing a single vector system for high-throughput genome editing in many plant species.

14.
Plants (Basel) ; 11(5)2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35270056

RESUMEN

The three amino acid loop extension (TALE) genes of the homeobox superfamily are responsible for numerous biological functions in plants. Herein, we identified a total of 72 TaTALE genes in the allohexaploid genome of bread wheat (Triticum aestivum L.) and performed a comprehensive investigation for gene and protein structural properties, phylogeny, expression patterns, and multilevel gene regulations. The identified TaTALE proteins were further classified into two groups, TaBLHs and TaKNOXs, which were tightly clustered into the phylogeny. The negative Ka/Ks ratio of duplicated genes suggested purifying selection pressure with confined functional divergence. Various signature domains and motifs were found conserved in both groups of proteins. The occurrence of diverse cis-regulatory elements and modulated expression during various developmental stages and in the presence of abiotic (heat, drought, salt) and two different fungal stresses suggested their roles in development and stress response, as well. The interaction of TaTALEs with the miRNAs and other development-related homeobox proteins also suggested their roles in growth and development and stress response. The present study revealed several important aspects of TaTALEs that will be useful in further functional validation of these genes in future studies.

15.
BioTech (Basel) ; 11(2)2022 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-35822792

RESUMEN

Post-translational modifications ("PTMs") in monoclonal antibodies (mAbs) contribute to charge variant distribution, which will affect biological efficacy and safety. For the characterization of mAbs, charge variants are used as a critical quality attributes for product quality, stability consistency and effectiveness. Charge variants in mAbs are characterized by a time-consuming and a multistep process starting from cation/anion exchange chromatography, acidic/basic fractions collection and subsequent reverse phase (RP) liquid chromatography, coupled with mass spectrometry (MS) analysis. Hence, an alternative characterization approach that would be highly selective for ion exchange chromatography-based charge variant analysis, which is compatible with on-line MS detection, is needed in the biopharma industry. Against this backdrop, multiple studies are being conducted to develop a simple straight on-line charge variant analysis method. In this regard, we apply the current study, which aims to develop a charge variant analytical method, based on volatile buffers with low ionic strength that can be used for on-line MS detection of charge variants of mAbs. This would enable the detection on "PTMs" using low ionic strength mobile phase compatible with MS. Hence, fruitful data can be obtained with a single chromatography run without any test sample preparation, eliminating the need for multiple steps of analysis, time-consuming process and multiple sample preparation steps. Thus, Charge Variant Analysis-MS technique will allow the characterization of charge-related PTMs on the intact protein stage. In this regard, this study is about development of a method having combination of chromatography and volatile mobile phase for mass spectrometry detection of mAbs being analyzed in native form. The method is qualified considering pharmacopeia guidelines because the ultimate aim is to transfer this method for Quality Control (QC) release testing of a monoclonal antibody, which is critical for batch release and the regulatory point of view. Acidic and basic variants have been separated with high resolution peak profile. Furthermore, there was no matrix interference and good separation selectivity in terms of specificity was obtained using this method. The experimental data suggested for the linearity of the method are 2.4 mg/mL to 3.6 mg/mL with % RSD below 2.0%. Additionally, Limit of Quantitation is found to be 0.15 mg/mL, which is 5% of loading amount. Consistently, the data show that the method is precise under the same operating conditions with a short time interval. Overall a simple, accurate, robust and precise pH gradient cation exchange chromatography method was developed and qualified for the characterization of a therapeutic native mAb. Additionally, this method can be used to claim a biosimilar product profile of an in-house product compare to an innovator.

16.
3 Biotech ; 12(9): 194, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35910289

RESUMEN

A reliable and stable Agrobacterium-mediated genetic transformation system for Artemisia pallens has been developed using cell suspension cultures derived from cotyledon explants. Cotyledon, attached cotyledon, and compound leaves were found to be suitable for the induction of callus among five different types of explants tested. The yellow friable callus derived from attached cotyledon was used to initiate suspension cultures in Suspension Culture Medium (SCM) which was supplemented with 2,4-dichlorophenoxyacetic acid (2,4-D) at 2.0 mg L-1 and in combination with different concentrations of Zeatin (ZEA) at 0.25 mg L-1. Two different shock treatments, cold shock (at 4 ℃) for 20 min and heat shock (at 45 ℃) treatment for 5 min, heat shock treatment increased the transformation efficiency. The supplementation of Pluronic F-68 (0.05%) significantly enhanced the transformation efficiency of suspension cultures, whereas Silwet L-77 (0.05%) leads to more browning of the cells and reduced the transformation efficiency. The maximum GUS intensity was recorded with an optimal intensity of blue spots in the transformed cells. The highest GUS fluorometric activity measured was 879.4 ± 113.7 nmol 4MU/mg/min in transformed cell suspension cultures. The hygromycin-resistant calli showed intense blue color in GUS histochemical assay. The transgene integration into the plant genome was confirmed by polymerase chain reaction (PCR) using uidA specific primers in six hygromycin-resistant cell lines. The partial coding sequence of three candidate reference genes, i.e., ADP-ribosylation factor (Arf), ß-actin (Act), and ubiquitin (Ubi), and carotenoid biosynthesis pathway gene, i.e., Phytoene desaturase (Pds) were cloned, sequenced, and submitted to NCBI for the first time. The quantitative mRNA expression of the transgene (uidA) and internal ApPds gene were evaluated in transgenic callus lines. The present Agrobacterium-mediated genetic transformation protocol could help in better understanding of the metabolic pathways of this medicinally important plant and its genetic improvement. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-022-03251-x.

17.
Int J Biol Macromol ; 219: 1261-1271, 2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-36057300

RESUMEN

Epigenetic changes are the heritable modifications in genes without altering DNA sequences. The epigenetic changes occur in the plant genomes to regulate gene expression patterns, which were used to regulate different biological processes, including coping various environmental stresses. These changes, including DNA methylation, non-coding RNA regulation, and histone modification, play a vital role in the transcription and translation processes to regulate gene expression. Gene engineering for the development of stress-tolerant crops via the DNA methylation pathway initially needs a proper selection of genes and its promoter. Manipulating epigenetics requires genetic engineering tools such as Zinc finger nucleases (ZFN), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas). However, CRISPR/Cas9 mediated epigenetic editing refers to transcriptional reprogramming at the targeted sites using epigenetic enzymes fused with decatalytical Cas9 (dCas9). This review focused on the different epigenetic mechanisms in plants and their potential contribution to developing epigenetic tools. The dCas9 endonuclease tethered with transcriptional repressor or activator domain leads to CRISPR inhibitor (CRISPRi) or activator (CRISPRa) for regulating gene expression. The dCas9 has been successfully fused with other various effector domains for constructing epigenetic tools, including the DNA methyltransferase 3A (DNMT3A), or the DNA demethylase TET. Multiple efforts have been made to improve epigenome editing in plants. Initially, incorporating SunTag into the dCas9-EpiEffector complex was used as an epigenetic tool; demethylation of target loci with dCas9-SunTag-TET1 futher increased its efficiency. Additionally, SunTag could also be fused with the dCas9-DNMT3A complex to augment CpG methylation at a targeted loci.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Proteína 9 Asociada a CRISPR , Sistemas CRISPR-Cas/genética , Productos Agrícolas/genética , Epigénesis Genética/genética , ARN no Traducido , Nucleasas de los Efectores Tipo Activadores de la Transcripción/genética , Nucleasas con Dedos de Zinc/genética
18.
Life (Basel) ; 11(10)2021 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-34685392

RESUMEN

CRISPR/Cas mediated genome editing is a revolutionary approach for manipulating the plant genome. However, the success of this technology is highly dependent on selection of a specific vector and the other components. A plant-specific CRISPR/Cas vector usually consists of a Cas gene, target-specific gRNA, leader sequence, selectable marker gene, precise promoters, and other accessories. It has always been challenging to select the specific vector for each study due to a lack of comprehensive information on CRISPR vectors in one place. Herein, we have discussed every technical aspect of various important elements that will be highly useful in vector selection and efficient editing of the desired plant genome. Various factors such as the promoter regulating the expression of Cas and gRNA, gRNA size, Cas variants, multicistronic gRNA, and vector backbone, etc. influence transformation and editing frequency. For example, the use of polycistronic tRNA-gRNA, and Csy4-gRNA has been documented to enhance the editing efficiency. Similarly, the selection of an efficient selectable marker is also a very important factor. Information on the availability of numerous variants of Cas endonucleases, such as Cas9, Cas12a, Cas12b, Casɸ, and CasMINI, etc., with diverse recognition specificities further broadens the scope of editing. The development of chimeric proteins such as Cas fused to cytosine or adenosine deaminase domain and modified reverse transcriptase using protein engineering enabled base and prime editing, respectively. In addition, the newly discovered Casɸ and CasMINI would increase the scope of genetic engineering in plants by being smaller Cas variants. All advancements would contribute to the development of various tools required for gene editing, targeted gene insertion, transcriptional activation/suppression, multiplexing, prime editing, base editing, and gene tagging. This review will serve as an encyclopedia for plant-specific CRISPR vectors and will be useful for researchers.

19.
Comput Biol Chem ; 85: 107210, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32062377

RESUMEN

Somatic embryogenesis receptor kinases (SERKs) play a significant role in morphogenesis, stress/defense and signal transduction. In the present study, we have identified two SERK and 11 SERK-like (SERL) genes in Phalaenopsis equestris, two SERK and 11 SERL genes in Dendrobium catenatum, and one SERK and eight SERL genes in Apostasia shenzhenica genome. Characterization of the SERK proteins revealed the presence of a signal peptide, a leucine zipper, five leucine-rich repeats (LRRs), a serine proline proline (SPP) motif, a transmembrane region, a kinase domain, and a C-terminus. Most of the SERK/SERL proteins were characterized with similar physicochemical properties. The presence of transmembrane region predicted their membranous localization. Tertiary structure prediction of all the five identified SERK proteins had sequence identity with BAK1 protein of Arabidopsis thaliana. Generally, all the SERK/SERL genes shared similar gene architecture and intron phasing. Gene ontology analysis indicated the role of SERKs in receptor and ATP binding, signal transduction, and protein phosphorylation. Phylogenetic analysis revealed the clustering of SERKs and SERLs in distinct clades. Expression of SERKs in reproductive tissues like floral bud, floral stalk, whole flower and pollen was reported to be higher than their expression in vegetative tissues with an exception of PeSERK1 and DcSERK1 which showed higher expression in leaves and roots, respectively. Likewise, a higher expression of AsSERK1 was observed in tubers. However, lower expression of SERLs was observed in majority of tissues studied irrespective of their vegetative or reproductive origin. This work paves way for future studies involving functional characterization of SERK/SERLs and their potential role in embryogenesis/organogenesis as an aid to regeneration and multiplication of endangered orchids.


Asunto(s)
Dendrobium/genética , Orchidaceae/genética , Proteínas de Plantas/genética , Proteínas Quinasas/genética , Biología Computacional , Modelos Moleculares , Filogenia
20.
J Genet Eng Biotechnol ; 18(1): 25, 2020 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-32638190

RESUMEN

BACKGROUND: CRISPR/Cas9 genome editing technology is a DNA manipulation tool for trait improvement. This technology has been demonstrated and successfully applied to edit the genome in various species of plants. The delivery of CRISPR/Cas9 components within rigid plant cells is very crucial for high editing efficiency. Here, we insight the strengths and weaknesses of each method of delivery. MAIN TEXT: The mutation efficiency of genome editing may vary and affected by different factors. Out of various factors, the delivery of CRISPR/Cas9 components into cells and genome is vital. The way of delivery defines whether the edited plant is transgenic or transgene-free. In many countries, the transgenic approach of improvement is a significant limitation in the regulatory approval of genetically modified crops. Gene editing provides an opportunity for generating transgene-free edited genome of the plant. Nevertheless, the mode of delivery of the CRISPR/Cas9 component is of crucial importance for genome modification in plants. Different delivery methods such as Agrobacterium-mediated, bombardment or biolistic method, floral-dip, and PEG-mediated protoplast are frequently applied to crops for efficient genome editing. CONCLUSION: We have reviewed different delivery methods with prons and cons for genome editing in plants. A novel nanoparticle and pollen magnetofection-mediated delivery systems which would be very useful in the near future. Further, the factors affecting editing efficiency, such as the promoter, transformation method, and selection pressure, are discussed in the present review.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA