Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 247
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 187(4): 931-944.e12, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38320549

RESUMEN

Differentiation is crucial for multicellularity. However, it is inherently susceptible to mutant cells that fail to differentiate. These mutants outcompete normal cells by excessive self-renewal. It remains unclear what mechanisms can resist such mutant expansion. Here, we demonstrate a solution by engineering a synthetic differentiation circuit in Escherichia coli that selects against these mutants via a biphasic fitness strategy. The circuit provides tunable production of synthetic analogs of stem, progenitor, and differentiated cells. It resists mutations by coupling differentiation to the production of an essential enzyme, thereby disadvantaging non-differentiating mutants. The circuit selected for and maintained a positive differentiation rate in long-term evolution. Surprisingly, this rate remained constant across vast changes in growth conditions. We found that transit-amplifying cells (fast-growing progenitors) underlie this environmental robustness. Our results provide insight into the stability of differentiation and demonstrate a powerful method for engineering evolutionarily stable multicellular consortia.


Asunto(s)
Escherichia coli , Biología Sintética , Diferenciación Celular , Escherichia coli/citología , Escherichia coli/genética , Integrasas/metabolismo , Biología Sintética/métodos , Aptitud Genética , Farmacorresistencia Bacteriana
2.
Cell ; 172(4): 744-757.e17, 2018 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-29398113

RESUMEN

Cell communication within tissues is mediated by multiple paracrine signals including growth factors, which control cell survival and proliferation. Cells and the growth factors they produce and receive constitute a circuit with specific properties that ensure homeostasis. Here, we used computational and experimental approaches to characterize the features of cell circuits based on growth factor exchange between macrophages and fibroblasts, two cell types found in most mammalian tissues. We found that the macrophage-fibroblast cell circuit is stable and robust to perturbations. Analytical screening of all possible two-cell circuit topologies revealed the circuit features sufficient for stability, including environmental constraint and negative-feedback regulation. Moreover, we found that cell-cell contact is essential for the stability of the macrophage-fibroblast circuit. These findings illustrate principles of cell circuit design and provide a quantitative perspective on cell interactions.


Asunto(s)
Comunicación Celular/fisiología , Proliferación Celular/fisiología , Fibroblastos/metabolismo , Macrófagos/metabolismo , Animales , Supervivencia Celular/fisiología , Femenino , Fibroblastos/citología , Macrófagos/citología , Masculino , Ratones , Ratones Transgénicos
3.
Cell ; 165(1): 88-99, 2016 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-27015309

RESUMEN

In C. elegans, small RNAs enable transmission of epigenetic responses across multiple generations. While RNAi inheritance mechanisms that enable "memorization" of ancestral responses are being elucidated, the mechanisms that determine the duration of inherited silencing and the ability to forget the inherited epigenetic effects are not known. We now show that exposure to dsRNA activates a feedback loop whereby gene-specific RNAi responses dictate the transgenerational duration of RNAi responses mounted against unrelated genes, elicited separately in previous generations. RNA-sequencing analysis reveals that, aside from silencing of genes with complementary sequences, dsRNA-induced RNAi affects the production of heritable endogenous small RNAs, which regulate the expression of RNAi factors. Manipulating genes in this feedback pathway changes the duration of heritable silencing. Such active control of transgenerational effects could be adaptive, since ancestral responses would be detrimental if the environments of the progeny and the ancestors were different.


Asunto(s)
Caenorhabditis elegans/genética , Epigénesis Genética , Interferencia de ARN , ARN de Helminto/genética , ARN Pequeño no Traducido/genética , Animales , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/metabolismo , Retroalimentación , ARN Bicatenario/metabolismo , ARN Interferente Pequeño/metabolismo
4.
Cell ; 166(5): 1282-1294.e18, 2016 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-27545349

RESUMEN

Data of gene expression levels across individuals, cell types, and disease states is expanding, yet our understanding of how expression levels impact phenotype is limited. Here, we present a massively parallel system for assaying the effect of gene expression levels on fitness in Saccharomyces cerevisiae by systematically altering the expression level of ∼100 genes at ∼100 distinct levels spanning a 500-fold range at high resolution. We show that the relationship between expression levels and growth is gene and environment specific and provides information on the function, stoichiometry, and interactions of genes. Wild-type expression levels in some conditions are not optimal for growth, and genes whose fitness is greatly affected by small changes in expression level tend to exhibit lower cell-to-cell variability in expression. Our study addresses a fundamental gap in understanding the functional significance of gene expression regulation and offers a framework for evaluating the phenotypic effects of expression variation.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Interacción Gen-Ambiente , Aptitud Genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/genética , Código de Barras del ADN Taxonómico , Biblioteca de Genes , Genes Fúngicos , Secuenciación de Nucleótidos de Alto Rendimiento
5.
Immunity ; 52(5): 872-884.e5, 2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32433950

RESUMEN

Some endocrine organs are frequent targets of autoimmune attack. Here, we addressed the origin of autoimmune disease from the viewpoint of feedback control. Endocrine tissues maintain mass through feedback loops that balance cell proliferation and removal according to hormone-driven regulatory signals. We hypothesized the existence of a dedicated mechanism that detects and removes mutant cells that missense the signal and therefore hyperproliferate and hypersecrete with potential to disrupt organismal homeostasis. In this mechanism, hypersecreting cells are preferentially eliminated by autoreactive T cells at the cost of a fragility to autoimmune disease. The "autoimmune surveillance of hypersecreting mutants" (ASHM) hypothesis predicts the presence of autoreactive T cells in healthy individuals and the nature of self-antigens as peptides from hormone secretion pathway. It explains why some tissues get prevalent autoimmune disease, whereas others do not and instead show prevalent mutant-expansion disease (e.g., hyperparathyroidism). The ASHM hypothesis is testable, and we discuss experimental follow-up.


Asunto(s)
Enfermedades Autoinmunes/inmunología , Diabetes Mellitus Tipo 1/inmunología , Glándulas Endocrinas/inmunología , Sistema Endocrino/inmunología , Vigilancia Inmunológica/inmunología , Animales , Enfermedades Autoinmunes/genética , Enfermedades Autoinmunes/patología , Proliferación Celular/genética , Proliferación Celular/fisiología , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/patología , Glándulas Endocrinas/citología , Glándulas Endocrinas/metabolismo , Sistema Endocrino/citología , Sistema Endocrino/metabolismo , Femenino , Humanos , Vigilancia Inmunológica/genética , Masculino , Mutación , Linfocitos T/citología , Linfocitos T/inmunología , Linfocitos T/metabolismo
6.
Cell ; 158(5): 1022-1032, 2014 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-25171404

RESUMEN

A widespread feature of extracellular signaling in cell circuits is paradoxical pleiotropy: the same secreted signaling molecule can induce opposite effects in the responding cells. For example, the cytokine IL-2 can promote proliferation and death of T cells. The role of such paradoxical signaling remains unclear. To address this, we studied CD4(+) T cell expansion in culture. We found that cells with a 30-fold difference in initial concentrations reached a homeostatic concentration nearly independent of initial cell levels. Below an initial threshold, cell density decayed to extinction (OFF-state). We show that these dynamics relate to the paradoxical effect of IL-2, which increases the proliferation rate cooperatively and the death rate linearly. Mathematical modeling explained the observed cell and cytokine dynamics and predicted conditions that shifted cell fate from homeostasis to the OFF-state. We suggest that paradoxical signaling provides cell circuits with specific dynamical features that are robust to environmental perturbations.


Asunto(s)
Linfocitos T CD4-Positivos/citología , Interleucina-2/metabolismo , Modelos Biológicos , Transducción de Señal , Animales , Linfocitos T CD4-Positivos/inmunología , Recuento de Células , Muerte Celular , Proliferación Celular , Células Cultivadas , Femenino , Homeostasis , Ratones , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo
7.
Trends Immunol ; 44(5): 365-371, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37061365

RESUMEN

Graves' disease (GD) and Hashimoto's thyroiditis (HT) are common autoimmune diseases of the thyroid gland, causing hyperthyroidism and hypothyroidism, respectively. Despite their opposing clinical manifestation, they have several enigmatic links. Here, we propose that GD and HT have the same fundamental origin: both diseases are the cost of a beneficial physiological process called autoimmune surveillance of hypersecreting mutants. Autoreactive T cells selectively eliminate mutant cells that hypersecrete the hormones and threaten to become toxic nodules. These T cells can trigger a humoral response in susceptible individuals, leading to the production of antibodies against thyroid antigens. This shared origin can explain similarities in incidence and risk factors between HT and GD, despite their opposite clinical phenotypes.


Asunto(s)
Enfermedades Autoinmunes , Enfermedad de Graves , Enfermedad de Hashimoto , Tiroiditis Autoinmune , Humanos
8.
Proc Natl Acad Sci U S A ; 120(51): e2312651120, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38096408

RESUMEN

Antibiotic effectiveness depends on a variety of factors. While many mechanistic details of antibiotic action are known, the connection between death rate and bacterial physiology is poorly understood. A common observation is that death rate in antibiotics rises linearly with growth rate; however, it remains unclear how other factors, such as environmental conditions and whole-cell physiological properties, affect bactericidal activity. To address this, we developed a high-throughput assay to precisely measure antibiotic-mediated death. We found that death rate is linear in growth rate, but the slope depends on environmental conditions. Growth under stress lowers death rate compared to nonstressed environments with similar growth rate. To understand stress's role, we developed a mathematical model of bacterial death based on resource allocation that includes a stress-response sector; we identify this sector using RNA-seq. Our model accurately predicts the minimal inhibitory concentration (MIC) with zero free parameters across a wide range of growth conditions. The model also quantitatively predicts death and MIC when sectors are experimentally modulated using cyclic adenosine monophosphate (cAMP), including protection from death at very low cAMP levels. The present study shows that different conditions with equal growth rate can have different death rates and establishes a quantitative relation between growth, death, and MIC that suggests approaches to improve antibiotic efficacy.


Asunto(s)
Antibacterianos , Fenómenos Fisiológicos Bacterianos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Bacterias , Pruebas de Sensibilidad Microbiana , Modelos Teóricos
9.
Cell ; 140(5): 643-51, 2010 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-20211134

RESUMEN

Drugs and drug combinations have complex biological effects on cells and organisms. Little is known about how drugs affect protein dynamics that determine these effects. Here, we use a dynamic proteomics approach to accurately follow 15 protein levels in human cells in response to 13 different drugs. We find that protein dynamics in response to combinations of drugs are described accurately by a linear superposition (weighted sum) of their response to individual drugs. The weights in this superposition describe the relative impact of each drug on each protein. Using these weights, we show that one can predict the dynamics in a three-drug or four-drug combination on the basis of the dynamics in drug pairs. Our approach might eliminate the need to increase the number of experiments exponentially with the number of drugs and suggests that it might be possible to rationally control protein dynamics with specific drug combinations.


Asunto(s)
Interacciones Farmacológicas , Expresión Génica/efectos de los fármacos , Proteínas/química , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Combinación de Medicamentos , Humanos
10.
PLoS Comput Biol ; 19(12): e1011645, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38055769

RESUMEN

Major depressive disorder (MDD) is the most common psychiatric disorder. It has a complex and heterogeneous etiology. Most treatments take weeks to show effects and work well only for a fraction of the patients. Thus, new concepts are needed to understand MDD and its dynamics. One of the strong correlates of MDD is increased activity and dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis which produces the stress hormone cortisol. Existing mathematical models of the HPA axis describe its operation on the scale of hours, and thus are unable to explore the dynamic on the scale of weeks that characterizes many aspects of MDD. Here, we propose a mathematical model of MDD on the scale of weeks, a timescale provided by the growth of the HPA hormone glands under control of HPA hormones. We add to this the mutual inhibition of the HPA axis and the hippocampus and other regions of the central nervous system (CNS) that forms a toggle switch. The model shows bistability between euthymic and depressed states, with a slow timescale of weeks in its dynamics. It explains why prolonged but not acute stress can trigger a self-sustaining depressive episode that persists even after the stress is removed. The model explains the weeks timescale for drugs to take effect, as well as the dysregulation of the HPA axis in MDD, based on gland mass changes. This understanding of MDD dynamics may help to guide strategies for treatment.


Asunto(s)
Trastorno Depresivo Mayor , Humanos , Trastorno Depresivo Mayor/psicología , Sistema Hipotálamo-Hipofisario , Sistema Hipófiso-Suprarrenal , Hidrocortisona
11.
Proc Natl Acad Sci U S A ; 118(7)2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33531344

RESUMEN

Hormones control the major biological functions of stress response, growth, metabolism, and reproduction. In animals, these hormones show pronounced seasonality, with different set-points for different seasons. In humans, the seasonality of these hormones remains unclear, due to a lack of datasets large enough to discern common patterns and cover all hormones. Here, we analyze an Israeli health record on 46 million person-years, including millions of hormone blood tests. We find clear seasonal patterns: The effector hormones peak in winter-spring, whereas most of their upstream regulating pituitary hormones peak only months later, in summer. This delay of months is unexpected because known delays in the hormone circuits last hours. We explain the precise delays and amplitudes by proposing and testing a mechanism for the circannual clock: The gland masses grow with a timescale of months due to trophic effects of the hormones, generating a feedback circuit with a natural frequency of about a year that can entrain to the seasons. Thus, humans may show coordinated seasonal set-points with a winter-spring peak in the growth, stress, metabolism, and reproduction axes.


Asunto(s)
Sistema Endocrino/fisiología , Hormonas/sangre , Registros Médicos/estadística & datos numéricos , Periodicidad , Estaciones del Año , Adaptación Fisiológica , Humanos , Estrés Fisiológico
12.
Mol Biol Evol ; 39(1)2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34633456

RESUMEN

Understanding the tradeoffs faced by organisms is a major goal of evolutionary biology. One of the main approaches for identifying these tradeoffs is Pareto task inference (ParTI). Two recent papers claim that results obtained in ParTI studies are spurious due to phylogenetic dependence (Mikami T, Iwasaki W. 2021. The flipping t-ratio test: phylogenetically informed assessment of the Pareto theory for phenotypic evolution. Methods Ecol Evol. 12(4):696-706) or hypothetical p-hacking and population-structure concerns (Sun M, Zhang J. 2021. Rampant false detection of adaptive phenotypic optimization by ParTI-based Pareto front inference. Mol Biol Evol. 38(4):1653-1664). Here, we show that these claims are baseless. We present a new method to control for phylogenetic dependence, called SibSwap, and show that published ParTI inference is robust to phylogenetic dependence. We show how researchers avoided p-hacking by testing for the robustness of preprocessing choices. We also provide new methods to control for population structure and detail the experimental tests of ParTI in systems ranging from ammonites to cancer gene expression. The methods presented here may help to improve future ParTI studies.


Asunto(s)
Filogenia
13.
Mol Syst Biol ; 18(8): e10919, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35938225

RESUMEN

Thyroid disorders are common and often require lifelong hormone replacement. Treating thyroid disorders involves a fascinating and troublesome delay, in which it takes many weeks for serum thyroid-stimulating hormone (TSH) concentration to normalize after thyroid hormones return to normal. This delay challenges attempts to stabilize thyroid hormones in millions of patients. Despite its importance, the physiological mechanism for the delay is unclear. Here, we present data on hormone delays from Israeli medical records spanning 46 million life-years and develop a mathematical model for dynamic compensation in the thyroid axis, which explains the delays. The delays are due to a feedback mechanism in which peripheral thyroid hormones and TSH control the growth of the thyroid and pituitary glands; enlarged or atrophied glands take many weeks to recover upon treatment due to the slow turnover of the tissues. The model explains why thyroid disorders such as Hashimoto's thyroiditis and Graves' disease have both subclinical and clinical states and explains the complex inverse relation between TSH and thyroid hormones. The present model may guide approaches to dynamically adjust the treatment of thyroid disorders.


Asunto(s)
Enfermedad de Graves , Enfermedades de la Tiroides , Humanos , Hormonas Tiroideas , Tirotropina
14.
FASEB J ; 36(10): e22559, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36125047

RESUMEN

Increased fluid-flow shear stress (FFSS) contributes to hyperfiltration-induced podocyte and glomerular injury resulting in progression of chronic kidney disease (CKD). We reported that increased FFSS in vitro and in vivo upregulates PGE2 receptor EP2 (but not EP4 expression), COX2-PGE2 -EP2 axis, and EP2-linked Akt-GSK3ß-ß-catenin signaling pathway in podocytes. To understand and use the disparities between PGE2 receptors, specific agonists, and antagonists of EP2 and EP4 were used to assess phosphorylation of Akt, GSK3ß and ß-catenin in podocytes using Western blotting, glomerular filtration barrier function using in vitro albumin permeability (Palb ) assay, and mitigation of hyperfiltration-induced injury in unilaterally nephrectomized (UNX) mice at 1 and 6 months. Results show an increase in Palb by PGE2 , EP2 agonist (EP2AGO ) and EP4 antagonist (EP4ANT ), but not by EP2 antagonist (EP2ANT ) or EP4 agonist (EP4AGO ). Pretreatment with EP2ANT blocked the effect of PGE2 or EP2AGO on Palb . Modulation of EP2 and EP4 also induced opposite effects on phosphorylation of Akt and ß-Catenin. Individual agonists or antagonists of EP2 or EP4 did not induce significant improvement in albuminuria in UNX mice. However, treatment with a combination EP2ANT + EP4AGO for 1 or 6 months caused a robust decrease in albuminuria. EP2ANT + EP4AGO combination did not impact adaptive hypertrophy or increased serum creatinine. Observed differences between expression of EP2 and EP4 on the glomerular barrier highlight these receptors as potential targets for intervention. Safe and effective mitigating effect of EP2ANT + EP4AGO presents a novel opportunity to delay the progression of hyperfiltration-associated CKD as seen in transplant donors.


Asunto(s)
Subtipo EP2 de Receptores de Prostaglandina E , Insuficiencia Renal Crónica , Albúminas , Albuminuria , Animales , Creatinina , Ciclooxigenasa 2 , Dinoprostona/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Hormonas Esteroides Gonadales , Ratones , Proteínas Proto-Oncogénicas c-akt , Subtipo EP2 de Receptores de Prostaglandina E/metabolismo , Subtipo EP4 de Receptores de Prostaglandina E , beta Catenina
15.
PLoS Comput Biol ; 18(7): e1010340, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35877694

RESUMEN

Studying the brain circuits that control behavior is challenging, since in addition to their structural complexity there are continuous feedback interactions between actions and sensed inputs from the environment. It is therefore important to identify mathematical principles that can be used to develop testable hypotheses. In this study, we use ideas and concepts from systems biology to study the dopamine system, which controls learning, motivation, and movement. Using data from neuronal recordings in behavioral experiments, we developed a mathematical model for dopamine responses and the effect of dopamine on movement. We show that the dopamine system shares core functional analogies with bacterial chemotaxis. Just as chemotaxis robustly climbs chemical attractant gradients, the dopamine circuit performs 'reward-taxis' where the attractant is the expected value of reward. The reward-taxis mechanism provides a simple explanation for scale-invariant dopaminergic responses and for matching in free operant settings, and makes testable quantitative predictions. We propose that reward-taxis is a simple and robust navigation strategy that complements other, more goal-directed navigation mechanisms.


Asunto(s)
Dopamina , Recompensa , Dopamina/fisiología , Aprendizaje/fisiología , Motivación , Neuronas
16.
Bipolar Disord ; 24(5): 499-508, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35244317

RESUMEN

Bipolar disorder (BD) is a complex and dynamic condition with a typical onset in late adolescence or early adulthood followed by an episodic course with intervening periods of subthreshold symptoms or euthymia. It is complicated by the accumulation of comorbid medical and psychiatric disorders. The etiology of BD remains unknown and no reliable biological markers have yet been identified. This is likely due to lack of comprehensive ontological framework and, most importantly, the fact that most studies have been based on small nonrepresentative clinical samples with cross-sectional designs. We propose to establish large, global longitudinal cohorts of BD studied consistently in a multidimensional and multidisciplinary manner to determine etiology and help improve treatment. Herein we propose collection of a broad range of data that reflect the heterogenic phenotypic manifestations of BD that include dimensional and categorical measures of mood, neurocognitive, personality, behavior, sleep and circadian, life-story, and outcomes domains. In combination with genetic and biological information such an approach promotes the integrating and harmonizing of data within and across current ontology systems while supporting a paradigm shift that will facilitate discovery and become the basis for novel hypotheses.


Asunto(s)
Trastorno Bipolar , Adolescente , Adulto , Trastorno Bipolar/psicología , Comorbilidad , Estudios Transversales , Humanos , Estudios Longitudinales , Personalidad
17.
Mol Syst Biol ; 16(7): e9510, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32672906

RESUMEN

Stress activates a complex network of hormones known as the hypothalamic-pituitary-adrenal (HPA) axis. The HPA axis is dysregulated in chronic stress and psychiatric disorders, but the origin of this dysregulation is unclear and cannot be explained by current HPA models. To address this, we developed a mathematical model for the HPA axis that incorporates changes in the total functional mass of the HPA hormone-secreting glands. The mass changes are caused by HPA hormones which act as growth factors for the glands in the axis. We find that the HPA axis shows the property of dynamical compensation, where gland masses adjust over weeks to buffer variation in physiological parameters. These mass changes explain the experimental findings on dysregulation of cortisol and ACTH dynamics in alcoholism, anorexia, and postpartum. Dysregulation occurs for a wide range of parameters and is exacerbated by impaired glucocorticoid receptor (GR) feedback, providing an explanation for the implication of GR in mood disorders. These findings suggest that gland-mass dynamics may play an important role in the pathophysiology of stress-related disorders.


Asunto(s)
Hormona Adrenocorticotrópica/metabolismo , Glándulas Endocrinas/crecimiento & desarrollo , Hidrocortisona/metabolismo , Sistema Hipotálamo-Hipofisario/metabolismo , Trastornos del Humor/metabolismo , Sistema Hipófiso-Suprarrenal/metabolismo , Estrés Fisiológico , Alcoholismo/metabolismo , Animales , Anorexia/metabolismo , Glándulas Endocrinas/metabolismo , Retroalimentación Fisiológica , Humanos , Sistema Hipotálamo-Hipofisario/fisiopatología , Modelos Teóricos , Sistema Hipófiso-Suprarrenal/fisiopatología , Periodo Posparto/metabolismo , Receptores de Glucocorticoides/metabolismo , Programas Informáticos
18.
Mol Cell ; 49(2): 213-21, 2013 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-23352242

RESUMEN

A recurring theme in biological circuits is the existence of components that are antagonistically bifunctional, in the sense that they simultaneously have two opposing effects on the same target or biological process. Examples include bifunctional enzymes that carry out two opposing reactions such as phosphorylating and dephosphorylating the same target, regulators that activate and also repress a gene in circuits called incoherent feedforward loops, and cytokines that signal immune cells to both proliferate and die. Such components are termed "paradoxical", and in this review we discuss how they can provide useful features to cell circuits that are otherwise difficult to achieve. In particular, we summarize how paradoxical components can provide robustness, generate temporal pulses, and provide fold-change detection, in which circuits respond to relative rather than absolute changes in signals.


Asunto(s)
Modelos Biológicos , Animales , Tipificación del Cuerpo/fisiología , Comunicación Celular , Citocinas/fisiología , Enzimas/metabolismo , Enzimas/fisiología , Retroalimentación Fisiológica , Homeostasis , Humanos , Receptores de Superficie Celular/metabolismo , Receptores de Superficie Celular/fisiología , Transducción de Señal
19.
Proc Natl Acad Sci U S A ; 115(8): E1926-E1935, 2018 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-29429964

RESUMEN

Cells in tissues communicate by secreted growth factors (GF) and other signals. An important function of cell circuits is tissue homeostasis: maintaining proper balance between the amounts of different cell types. Homeostasis requires negative feedback on the GFs, to avoid a runaway situation in which cells stimulate each other and grow without control. Feedback can be obtained in at least two ways: endocytosis in which a cell removes its cognate GF by internalization and cross-inhibition in which a GF down-regulates the production of another GF. Here we ask whether there are design principles for cell circuits to achieve tissue homeostasis. We develop an analytically solvable framework for circuits with multiple cell types and find that feedback by endocytosis is far more robust to parameter variation and has faster responses than cross-inhibition. Endocytosis, which is found ubiquitously across tissues, can even provide homeostasis to three and four communicating cell types. These design principles form a conceptual basis for how tissues maintain a healthy balance of cell types and how balance may be disrupted in diseases such as degeneration and fibrosis.


Asunto(s)
Endocitosis , Fenómenos Fisiológicos Celulares , Células/química , Homeostasis , Modelos Biológicos , Modelos Teóricos
20.
Am J Physiol Renal Physiol ; 319(2): F312-F322, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32628542

RESUMEN

The ultrafiltrate flow over the major processes and cell body generates fluid flow shear stress (FFSS) on podocytes. Hyperfiltration-associated increase in FFSS can lead to podocyte injury and detachment. Previously, we showed that FFSS-induced upregulation of the cyclooxygenase 2 (COX2)-PGE2-prostaglandin E receptor 2 (EP2) axis in podocytes activates Akt-glycogen synthase kinase-3ß-ß-catenin and MAPK/ERK signaling in response to FFSS. Integrative MultiOmics Pathway Resolution (IMPRes) is a new bioinformatic tool that enables simultaneous time-series analysis of more than two groups to identify pathways and molecular connections. In the present study, we used previously characterized COX2 [prostaglandin-endoperoxide synthase 2 (Ptgs2)], EP2 (Ptger2), and ß1-catenin (Ctnnb1) as "seed genes" from an array data set of four groups analyzed over a time course. The 3 seed genes shared 7 pathways and 50 genes of 14 pathways and 89 genes identified by IMPRes. A composite of signaling pathways highlighted the temporal molecular connections during mechanotransduction signaling in FFSS-treated podocytes. We investigated the "proteoglycans in cancer" and "galactose metabolism" pathways predicted by IMPRes. A custom-designed PCR array validated 60.7% of the genes predicted by IMPRes analysis, including genes for the above-named pathways. Further validation using Western blot analysis showed increased expression of phosho-Erbb2, phospho-mammalian target of rapamycin (mTOR), CD44, and hexokinase II (Hk2); decreased total Erbb2, galactose mutarotase (Galm), and ß-1,4-galactosyltransferase 1 (B4galt1); and unchanged total mTOR and AKT3. These findings corroborate our previously reported results. This study demonstrates the potential of the IMPRes method to identify novel pathways. Identifying the "proteoglycans in cancer" and "galactose metabolism" pathways has generated a lead to study the significance of FFSS-induced glycocalyx remodeling and possible detachment of podocytes from the glomerular matrix.


Asunto(s)
Podocitos/metabolismo , Proteoglicanos/metabolismo , Subtipo EP2 de Receptores de Prostaglandina E/metabolismo , Estrés Mecánico , Activación Transcripcional/fisiología , Ciclooxigenasa 2/metabolismo , Glomérulos Renales/metabolismo , Mecanotransducción Celular/fisiología , Serina-Treonina Quinasas TOR/metabolismo , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA