Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Global Health ; 20(1): 25, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38532484

RESUMEN

BACKGROUND: Unequal and inequitable access to Covid-19 vaccines in low- and middle-income countries (L&MICs) was a major political, ethical and public health failure in the pandemic. However, vaccine developers' practices were not monolithic, but rather, took diverse approaches to supplying different countries, with important implications for global access. RESULTS: Using data on R&D investments, regulatory approvals, manufacturing and purchase agreements, and vaccine deliveries, we identified six distinct innovation models that apply across the 14 COVID-19 vaccines with more international presence from 2020-2022. "Western Early Arrivers" Pfizer/BioNTech and Moderna supplied the largest volumes quickly and prioritized high-income countries (HICs) from registration to vaccine delivery. "Western Latecomers" Janssen and Novavax supplied intermediate volumes later, also prioritizing HICs but with a greater proportion to L&MICs. "Major Chinese Developers" Sinopharm and Sinovac supplied intermediate volumes early, primarily to middle-income countries (MICs). "Russian Developer" Gamaleya completed development early but ultimately supplied small volumes, primarily to middle-income countries (MICs). "Cosmopolitan Developer" Oxford/AstraZeneca supplied large volumes early to HICs and MICs at the lowest prices. Finally, "Small MIC Developers" CanSino, Bharat Biotech, Medigen, Finlay Institute and the Center for Genetic Engineering and Biotechnology (CGEB), exported relatively small volumes to a few MICs. Low-income countries (LICs) were not targeted by any developer, and received far fewer doses, later, than any other income group. Almost all developers received public funding and other forms of support, but we found little evidence that such support was leveraged to expand global access. CONCLUSIONS: Each of the six innovation models has different implications for which countries get access to which vaccines, how quickly, and at which prices. Each offers different strengths and weaknesses for achieving equitable access. Our findings also suggest that Western firms had the greatest capacity to develop and deliver vaccines quickly during the pandemic, but such capacity is rapidly becoming more globally distributed with MICs playing a significant role, especially in supplying other MICs. Given the critical role of public support in enabling pandemic vaccine development and supply, governments have both the capacity and responsibility to craft international rules that will make responses to future pandemics more equitable and effective.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , Academias e Institutos , Comercio , Gobierno
3.
F1000Res ; 12: 211, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38778810

RESUMEN

This article aims to synthesize the existing literature on the implementation of public policies to incentivize the development of treatments for rare diseases, (diseases with very low prevalence and therefore with low commercial interest) otherwise known as orphan drugs. The implementation of these incentives in the United States (US), Japan, and in the European Union (EU) seems to be related to a substantial increase in treatments for these diseases, and has influenced the way the pharmaceutical research & development (R&D) system operates beyond this policy area. Despite the success of the Orphan Drug model, the academic literature also highlights the negative implications that these public policies have on affordability and access to orphan drugs, as well as on the prioritization of certain disease rare areas over others. The synthesis focuses mostly on the United States' Orphan Drug Act (ODA) as a model for subsequent policies in other regions and countries. It starts with a historical overview of the creation of the term "rare diseases", continues with a summary of the evidence available on the US ODA's positive and negative impacts, and provides a summary of the different proposals to reform these incentives in light of the negative outcomes described. Finally, it describes some key aspects of the Japanese and European policies, as well as some of the challenges captured in the literature related to their impact in Low- and Middle-Income Countries (LMICs).


Asunto(s)
Producción de Medicamentos sin Interés Comercial , Enfermedades Raras , Enfermedades Raras/tratamiento farmacológico , Humanos , Producción de Medicamentos sin Interés Comercial/legislación & jurisprudencia , Estados Unidos , Unión Europea , Política de Salud , Japón
4.
J Pharm Policy Pract ; 16(1): 155, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38012700

RESUMEN

BACKGROUND: There is growing interest in pharmaceutical innovation in low- and middle-income countries (LMICs), but information on existing activities, capacities, and outcomes is scarce. We mapped available data at the global level, and studied the national pharmaceutical innovation systems of Bangladesh and Colombia to shed light on pharmaceutical research and development (R&D) in the Global South, including challenges and prospects, to help fill existing knowledge gaps. METHODS: We gathered and analyzed data from three types of sources: literature, semi-structured interviews with key informants, and publicly available data on R&D funding, R&D scientific capacity measured by human resources, and clinical trial activities. RESULTS: Pharmaceutical R&D activities are occurring in many LMICs, but 16 countries have emerged as frontrunners. Investment in R&D in LMICs has increased in the past decade, particularly from middle-income countries (MICs). Capacity is also growing, with an increase in the number of research organizations and the amount of funding available from external sources. The total number of clinical trials and the proportion of trials in LMICs increased markedly, and there is also growing activity in the earlier, more innovative and riskier Phase 1 and 2 trials. Non-commercial entities comprise the majority of clinical trial funders and sponsors in LMICs. Finally, investments have borne fruit, as indicated by a number of innovative medicines developed in LMICs. The Bangladesh and Colombia country studies showed that there is still a need for both targeted R&D policies to strengthen capacities in the pharmaceutical sector, and more government support to overcome the challenges of a lack of funding and coordination among different actors. CONCLUSIONS: By triangulating between the data sources, it was possible to paint a broad picture of who was involved in pharmaceutical R&D in LMICs, in which particular countries, for which diseases, in which R&D phases, and with what results-as well as how these trends have changed over time. Prioritizing pharmaceutical R&D is an important strategy for better meeting health needs. The trendlines are promising, but focused attention is still needed to realize the potential for greater innovation in the Global South.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA