RESUMEN
Chagas disease is a neglected tropical infection that affects millions of people. This study explores transcriptomic changes in T. cruzi-infected subjects before and after treatment. Using total RNA sequencing, gene transcription was analyzed in peripheral blood mononuclear cells from asymptomatic (n=19) and symptomatic (n=8) T. cruzi-infected individuals, and non-infected controls (n=15). Differential expression was compared across groups, and before/after treatment in infected subgroups. Untreated infection showed 12 upregulated and 206 downregulated genes in all T. cruzi-infected subjects, and 47 upregulated and 215 downregulated genes in the symptomatic group. Few differentially expressed genes were found after treatment and between the different infected groups. Gene set enrichment analysis highlighted immune-related pathways activated during infection, with therapy normalizing immune function. Changes in the kynurenine/tryptophan ratio, increased pre-treatment, suggested chronic immune fatigue, which was restored post-treatment. These differentially expressed genes offer insights for potential biomarkers and pathways associated with disease progression and treatment response.
RESUMEN
There is no consensus on the diagnostic algorithms for many scenarios of Trypanosoma cruzi infection, which hinders the establishment of governmental guidelines in endemic and non-endemic countries. In the acute phase, parasitological methods are currently employed, and standardised surrogate molecular tests are being introduced to provide higher sensitivity and less operator-dependence. In the chronic phase, IgG-based serological assays are currently used, but if a single assay does not reach the required accuracy, PAHO/WHO recommends at least two immunological tests with different technical principles. Specific algorithms are applied to diagnose congenital infection, screen blood and organ donors or conduct epidemiological surveys. Detecting Chagas disease reactivation in immunosuppressed individuals is an area of increasing interest. Due to its neglect, enhancing access to diagnosis of patients at risk of suffering T. cruzi infection should be a priority at national and regional levels.
Asunto(s)
Enfermedad de Chagas , Trypanosoma cruzi , Enfermedad de Chagas/epidemiología , Humanos , Huésped Inmunocomprometido , Infección Persistente , Trypanosoma cruzi/genéticaRESUMEN
Chagas disease (CD) is caused by the parasite Trypanosoma cruzi and affects 6-7 million people worldwide. The diagnosis is still challenging, due to extensive parasite diversity encompassing seven genotypes (TcI-VI and Tcbat) with diverse ecoepidemiological, biological, and pathological traits. Chemotherapeutic intervention is usually effective but associated with severe adverse events. The development of safer, more effective therapies is hampered by the lack of biomarker(s) (BMKs) for the early assessment of therapeutic outcomes. The mammal-dwelling trypomastigote parasite stage expresses glycosylphosphatidylinositol-anchored mucins (tGPI-MUC), whose O-glycans are mostly branched with terminal, nonreducing α-galactopyranosyl (α-Gal) glycotopes. These are absent in humans, and thus highly immunogenic and inducers of specific CD anti-α-Gal antibodies. In search for α-Gal-based BMKs, here we describe the synthesis of neoglycoprotein NGP11b, comprised of a carrier protein decorated with the branched trisaccharide Galα(1,2)[Galα(1,6)]Galß. By chemiluminescent immunoassay using sera/plasma from chronic CD (CCD) patients from Venezuela and Mexico and healthy controls, NGP11b exhibited sensitivity and specificity similar to that of tGPI-MUC from genotype TcI, predominant in those countries. Preliminary evaluation of CCD patients subjected to chemotherapy showed a significant reduction in anti-α-Gal antibody reactivity to NGP11b. Our data indicated that NGP11b is a potential BMK for diagnosis and treatment assessment in CCD patients.
Asunto(s)
Enfermedad de Chagas , Trypanosoma cruzi , Biomarcadores , Enfermedad de Chagas/diagnóstico , Enfermedad de Chagas/tratamiento farmacológico , Humanos , Mucinas , TrisacáridosRESUMEN
Chagas disease is caused by the protozoan parasite Trypanosoma cruzi and affects over 6 million people worldwide. Development of new drugs to treat this disease remains a priority since those currently available have variable efficacy and frequent adverse effects, especially during the long regimens required for treating the chronic stage of the disease. T. cruzi modulates the host cell-metabolism to accommodate the cell cytosol into a favorable growth environment and acquire nutrients for its multiplication. In this study we evaluated the specific anti-T. cruzi activity of nine bio-energetic modulator compounds. Notably, we identified that 17-DMAG, which targets the ATP-binding site of heat shock protein 90 (Hsp90), has a very high (sub-micromolar range) selective inhibition of the parasite growth. This inhibitory effect was also highly potent (IC50 = 0.27 µmol L-1) against the amastigote intracellular replicative stage of the parasite. Moreover, molecular docking results suggest that 17-DMAG may bind T. cruzi Hsp90 homologue Hsp83 with good affinity. Evaluation in a mouse model of chronic T. cruzi infection did not show parasite growth inhibition, highlighting the difficulties encountered when going from in vitro assays onto preclinical drug developmental stages.
Asunto(s)
Metabolismo Energético/efectos de los fármacos , Tripanocidas/farmacología , Trypanosoma cruzi/efectos de los fármacos , Trypanosoma cruzi/metabolismo , Animales , Biomarcadores , Enfermedad de Chagas/tratamiento farmacológico , Enfermedad de Chagas/parasitología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Proteínas HSP90 de Choque Térmico/química , Humanos , Redes y Vías Metabólicas/efectos de los fármacos , Ratones , Conformación Molecular , Relación Estructura-Actividad , Tripanocidas/químicaRESUMEN
The vectorization of rare human adenovirus (HAdV) types will widen our knowledge of this family and their interaction with cells, tissues and organs. In this study we focus on HAdV-56, a member of human Ad species D, and create ease-of-use cloning systems to generate recombinant HAdV-56 vectors carrying foreign genes. We present in vitro transduction profiles for HAdV-56 in direct comparison to the most commonly used HAdV-5-based vector. In vivo characterizations demonstrate that when it is delivered intravenously (i.v.) HAdV-56 mainly targets the spleen and, to a lesser extent, the lungs, whilst largely bypassing liver transduction in mice. HAdV-56 triggered robust inflammatory and cellular immune responses, with higher induction of IFNγ, TNFα, IL5, IL6, IP10, MCP1 and MIG1 compared to HAdV-5 following i.v. administration. We also investigated its potential as a vaccine vector candidate by performing prime immunizations in mice with HAdV-56 encoding luciferase (HAdV-56-Luc). Direct comparisons were made to HAdV-26, a highly potent human vaccine vector currently in phase II clinical trials. HAdV-56-Luc induced luciferase 'antigen'-specific IFNγ-producing cells and anti-HAdV-56 neutralizing antibodies in Balb/c mice, demonstrating a near identical profile to that of HAdV-26. Taken together, the data presented provides further insight into human Ad receptor/co-receptor usage, and the first report on HAdV-56 vectors and their potential for gene therapy and vaccine applications.
Asunto(s)
Adenovirus Humanos/inmunología , Expresión Génica/efectos de los fármacos , Terapia Genética/métodos , Vectores Genéticos/inmunología , Vacunación , Vacunas Virales/biosíntesis , Adenovirus Humanos/genética , Animales , Anticuerpos Antivirales/biosíntesis , Anticuerpos Antivirales/sangre , Quimiocina CCL2/genética , Quimiocina CCL2/inmunología , Quimiocina CXCL10/genética , Quimiocina CXCL10/inmunología , Quimiocina CXCL9/genética , Quimiocina CXCL9/inmunología , Femenino , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Humanos , Inyecciones Intravenosas , Interferón gamma/genética , Interferón gamma/inmunología , Interleucina-5/genética , Interleucina-5/inmunología , Interleucina-6/genética , Interleucina-6/inmunología , Pulmón/efectos de los fármacos , Pulmón/inmunología , Ratones , Ratones Endogámicos BALB C , Bazo/efectos de los fármacos , Bazo/inmunología , Transgenes , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/inmunología , Vacunas Virales/administración & dosificaciónRESUMEN
Recombinant vectors based on human adenovirus serotype 5 (HAdV-5) have been extensively studied in preclinical models and clinical trials over the past two decades. However, the thorough understanding of the HAdV-5 interaction with human subjects has uncovered major concerns about its product applicability. High vector-associated toxicity and widespread preexisting immunity have been shown to significantly impede the effectiveness of HAdV-5-mediated gene transfer. It is therefore that the in-depth knowledge attained working on HAdV-5 is currently being used to develop alternative vectors. Here, we provide a comprehensive overview of data obtained in recent years disqualifying the HAdV-5 vector for systemic gene delivery as well as novel strategies being pursued to overcome the limitations observed with particular emphasis on the ongoing vectorization efforts to obtain vectors based on alternative serotypes.
Asunto(s)
Adenovirus Humanos/inmunología , Vectores Genéticos/toxicidad , Adenovirus Humanos/genética , Técnicas de Transferencia de Gen , Vectores Genéticos/inmunología , Humanos , Inmunidad InnataRESUMEN
Chagas disease, caused by Trypanosoma cruzi, affects millions worldwide. The 2030 WHO roadmap aims to eliminate it as a public health concern, emphasising the need for timely diagnosis to enhance treatment access. Current diagnostic algorithms, which rely on multiple tests, have prolonged turnaround times. This proves particularly problematic in resource-limited settings. Addressing this issue necessitates the validation and adoption of innovative tools. We explore recent developments in Chagas disease diagnosis, reviewing historical context and advancements. Despite progress, challenges persist. This article contributes to the understanding of current and future directions in this neglected healthcare area. Parasitological methods are simple but exhibit low sensitivity and require supplementary tests. Molecular methods, with automation potential, allow quantification and higher throughput. Serological tools show good performance but struggle with parasite antigenic diversity. Prioritising point-of-care tests is crucial for widespread accessibility and could offer a strategy to control disease impact. Ultimately, balancing achievements and ongoing obstacles is essential for comprehensive progress.
RESUMEN
Timely diagnosis of vertical Trypanosoma cruzi infections involves microscopy-based detection of circulating parasites from peripheral blood, which lacks sensitivity and is operator dependent. Consequently, most children born to T. cruzi-infected mothers are required to undergo serological testing after 9 months, which risks loss to follow-up. Alternatively, the loop-mediated isothermal amplification (LAMP) test for T. cruzi DNA offers high analytical and clinical performance and is easy to use in low-complexity laboratories. Recently, we optimized this technique using an ultrarapid DNA extraction method combined with the LAMP in dried blood spots (DBSs) on FTA cards. The procedure has been implemented in 10 public maternities across Paraguay, Bolivia, and Argentina, involving the training of 14 technicians. Operators' performance was evaluated using a standardized DBS testing panel for harmonization, including negative controls and DBS samples artificially contaminated with T. cruzi at 50 and 20 cells/mL. There was strong agreement (ĸ = 0.924) for controls and 50 cells/mL samples, and good agreement (ĸ = 0.718) across all testing panels, even at the detection limit of the test. A prospective study collected 306 DBSs from 222 newborns at birth and/or 2 months, detecting T. cruzi microscopically in four cases. LAMP identified eight positive cases and perfectly aligned with real-time PCR (ĸ = 1), demonstrating higher sensitivity than microscopic observation for early detection of infection in infants.
RESUMEN
The diagnosis of Chagas disease mostly relies on the use of multiple serologic tests that are often unavailable in many of the remote settings where the disease is highly prevalent. In the Teniente Irala Fernández Municipality, in central Paraguay, efforts have been made to increase the diagnostic capabilities of specific rural health centres, but no quality assurance of the results produced has been performed. We comparatively analysed the results obtained with 300 samples tested using a commercial rapid diagnostic test (RDT) and enzyme linked immunosorbent assays (ELISA) at the laboratory of the Teniente Irala Fernández Health Center (CSTIF) with those generated upon repeating the tests at an independent well-equipped research laboratory (CEDIC). A subgroup of 52 samples were further tested at Paraguay's Central Public Health Laboratory (LCSP) by means of a different technique to evaluate the diagnostic performance of the tests carried out at CSTIF. We observed an excellent agreement between the ELISA results obtained at CSTIF and CEDIC (kappa coefficients between 0.85 and 0.93 for every kit evaluated), and an overall good performance of the tests carried out at CSTIF. However, the sensitivity of one kit was lower at CSTIF (81.3 %) than at CEDIC (100 %). The individual use of an RDT to detect the infection at CSTIF showed a similar sensitivity to that obtained combining it to an ELISA test (92.3% vs 88.5, p = 1). Nonetheless, the generalizability of this result is yet limited and will require of further studies.
Asunto(s)
Enfermedad de Chagas , Atención Primaria de Salud , Población Rural , Sensibilidad y Especificidad , Pruebas Serológicas , Paraguay , Humanos , Enfermedad de Chagas/diagnóstico , Pruebas Serológicas/métodos , Pruebas Serológicas/normas , Adulto , Masculino , Femenino , Garantía de la Calidad de Atención de Salud , Adolescente , Ensayo de Inmunoadsorción Enzimática/métodos , Ensayo de Inmunoadsorción Enzimática/normas , Persona de Mediana Edad , Niño , Adulto Joven , Preescolar , Anciano , Anticuerpos Antiprotozoarios/sangreRESUMEN
BACKGROUND: Vertical transmission of Trypanosoma cruzi represents approximately 20% of new Chagas disease cases. Early detection and treatment for women of childbearing age and newborns is a public health priority, but the lack of a simple and reliable diagnostic test remains a major barrier. We aimed to evaluate the performance of a point-of-care loop-mediated isothermal amplification (LAMP) assay for the detection of T cruzi. METHODS: In this proof-of-concept study, we coupled a low-cost 3D printer repurposed for sample preparation and amplification (PrintrLab) to the Eiken T cruzi-LAMP prototype to detect vertically transmitted T cruzi, which we compared with standardised PCR and with the gold-standard algorithm (microscopy at birth and 2 months and serological study several months later). We screened pregnant women from two hospitals in the Bolivian Gran Chaco province, and those who were seropositive for T cruzi were offered the opportunity for their newborns to be enrolled in the study. Newborns were tested by microscopy, LAMP, and PCR at birth and 2 months, and by serology at 8 months. FINDINGS: Between April 23 and Nov 17, 2018, 986 mothers were screened, among whom 276 were seropositive for T cruzi (28·0% prevalence, 95% CI 25·6-31·2). In total, 224 infants born to 221 seropositive mothers completed 8 months of follow-up. Congenital transmission was detected in nine of the 224 newborns (4·0% prevalence, 1·9-7·5) by direct microscopy observation, and 14 more cases were diagnosed serologically (6·3%, 3·6-10·3), accounting for an overall vertical transmission rate of 10·3% (6·6-15·0; 23 of 224). All microscopy-positive newborns were positive by PrintrLab-LAMP and by PCR, while these techniques respectively detected four and five extra positive cases among the remaining 215 microscopy-negative newborns. INTERPRETATION: The PrintrLab-LAMP yielded a higher sensitivity than microscopy-based analysis. Considering the simpler use and expected lower cost of LAMP compared with PCR, our findings encourage its evaluation in a larger study over a wider geographical area. FUNDING: Inter-American Development Bank.
Asunto(s)
Enfermedad de Chagas , Transmisión Vertical de Enfermedad Infecciosa , Técnicas de Diagnóstico Molecular , Técnicas de Amplificación de Ácido Nucleico , Trypanosoma cruzi , Humanos , Enfermedad de Chagas/diagnóstico , Enfermedad de Chagas/transmisión , Enfermedad de Chagas/epidemiología , Enfermedad de Chagas/parasitología , Trypanosoma cruzi/genética , Trypanosoma cruzi/aislamiento & purificación , Recién Nacido , Bolivia/epidemiología , Femenino , Embarazo , Técnicas de Amplificación de Ácido Nucleico/métodos , Técnicas de Diagnóstico Molecular/métodos , Prueba de Estudio Conceptual , Sensibilidad y Especificidad , AdultoRESUMEN
The NHEPACHA Iberoamerican Network, founded on the initiative of a group of researchers from Latin American countries and Spain, aims to establish a research framework for Chagas disease that encompasses diagnosis and treatment. For this purpose, the network has created a questionnaire to gather relevant data on epidemiological, clinical, diagnostic, and therapeutic aspects of the disease. This questionnaire was developed based on a consensus of expert members of the network, with the intention of collecting high-quality standardized data, which can be used interchangeably by the different research centers that make up the NHEPACHA network. Furthermore, the network intends to offer a clinical protocol that can be embraced by other researchers, facilitating comparability among published studies, as well as the development of therapeutic response and progression markers.
Asunto(s)
Enfermedad de Chagas , Enfermedad de Chagas/epidemiología , Enfermedad de Chagas/tratamiento farmacológico , Humanos , América Latina/epidemiología , Encuestas y Cuestionarios , España/epidemiología , Bases de Datos Factuales , Investigación Biomédica/normasRESUMEN
Chagas disease, caused by the parasite Trypanosoma cruzi, affects over 6 million people, mainly in Latin America. Two different clinical phases, acute and chronic, are recognised. Currently, 2 anti-parasitic drugs are available to treat the disease (nifurtimox and benznidazole), but diagnostic methods require of a relatively complex infrastructure and trained personnel, limiting its widespread use in endemic areas, and the access of patients to treatment. New diagnostic methods, such as rapid tests (RDTs) to diagnose chronic Chagas disease, or loop-mediated isothermal amplification (LAMP), to detect acute infections, represent valuable alternatives, but the parasite's remarkable genetic diversity might make its implementation difficult. Furthermore, determining the efficacy of Chagas disease treatment is complicated, given the slow reversion of serological anti-T. cruzi antibody reactivity, which may even take decades to occur. New biomarkers to evaluate early therapeutic efficacy, as well as diagnostic tests able to detect the wide variety of circulating genotypes, are therefore, urgently required. To carry out studies that address these needs, high-quality and traceable samples from T. cruzi-infected individuals with different geographical backgrounds, along with associated clinical and epidemiological data, are necessary. This work describes the framework for the creation of such repositories, following standardised and uniform protocols, and considering the ethical, technical, and logistic aspects of the process. The manual can be adapted according to the resources of each laboratory, to guarantee that samples are obtained in a reproducible way, favouring the exchange of data among different work groups, and their generalizable evaluation and analysis. The main objective of this is to accelerate the development of new diagnostic methods and the identification of biomarkers for Chagas disease.
Asunto(s)
Enfermedad de Chagas , Trypanosoma cruzi , Enfermedad de Chagas/diagnóstico , Humanos , Trypanosoma cruzi/genética , Bancos de Muestras Biológicas , Técnicas de Amplificación de Ácido Nucleico/métodosRESUMEN
Hemagglutinin-esterases (HE) are viral envelope proteins present in some members from the toro-, corona- and orthomyxovirus families, all related with enteric and/or respiratory tract infections. HE proteins mediate reversible binding to sialic acid receptor determinants, very abundant glycan residues in the enteric and respiratory tracts. The role of the HE protein during the torovirus infection cycle remains unknown, although it is believed to be important in the natural infection process. The phylogenetic analysis of HE coding sequences from porcine torovirus (PToV) field strains revealed the existence of two distinct HE lineages. In a previous study, PToV virus strains with HE proteins from the two lineages were found coexisting in a pig herd, and they were even obtained from the same animal at two consecutive sampling time points. In this work, we report antigenic differences between the two HE lineages, and discuss the possible implications that the coexistence of viruses belonging to both lineages might have on the spread and sustainment of PToV infection in the farms.
Asunto(s)
Hemaglutininas Virales/genética , Enfermedades de los Porcinos/inmunología , Infecciones por Torovirus/veterinaria , Torovirus/enzimología , Proteínas Virales de Fusión/genética , Secuencia de Aminoácidos , Animales , Antígenos Virales/sangre , Antígenos Virales/genética , Hemaglutininas Virales/metabolismo , Datos de Secuencia Molecular , Filogenia , Alineación de Secuencia/veterinaria , Porcinos , Enfermedades de los Porcinos/virología , Torovirus/clasificación , Infecciones por Torovirus/inmunología , Infecciones por Torovirus/virología , Proteínas Virales de Fusión/metabolismoRESUMEN
Chagas disease, caused by the protozoan parasite Trypanosoma cruzi, is considered a Neglected Tropical Disease. Limited investment is assigned to its study and control, even though it is one of the most prevalent parasitic infections worldwide. An innovative vaccination strategy involving an epitope-based vaccine that displays multiple immune determinants originating from different antigens could counteract the high biological complexity of the parasite and lead to a wide and protective immune response. In this chapter, we describe a computational reverse vaccinology pipeline applied to identify the most promising peptide sequences from T. cruzi proteins, prioritizing evolutionary conserved sequences, to finally select a list of T and B cell epitope candidates to be further tested in an experimental setting.
Asunto(s)
Enfermedad de Chagas , Vacunas Antiprotozoos , Trypanosoma cruzi , Humanos , Antígenos de Protozoos/genética , Enfermedad de Chagas/parasitología , Epítopos de Linfocito BRESUMEN
BACKGROUND: Chagas disease or American trypanosomiasis, a neglected tropical disease, is a persistent Public Health problem in Latin America and other, non-endemic, countries. Point-of-care (POC) sensitive methods are still needed to improve and extend early diagnosis in acute infections such as congenital Chagas disease. The objective of this study was to analytically evaluate in the lab the performance of a qualitative POC molecular test (Loop-mediated isothermal amplification (LAMP), Eiken, Japan) for rapid diagnosis of congenital Chagas disease employing FTA cards or Whatman 903 filter paper as solid supports for small-scale volumes of human blood. METHODOLOGY/PRINCIPAL FINDINGS: We used human blood samples artificially infected with cultured T. cruzi strains to assess the analytical performance of the test in comparison with liquid blood anticoagulated with heparin. The DNA extraction process was evaluated using the ultrarapid purification system PURE manufactured by Eiken Chemical Company (Tokio, Japan) over artificially infected liquid blood or different amounts of dried blood spot (DBS) 3- and 6-mm pieces of FTA and Whatman 903 paper. LAMP was performed on a AccuBlock (LabNet, USA) heater or in the Loopamp LF-160 incubator (Eiken, Japan), and visualization of results was either done at naked eye, using the LF-160 device or P51 Molecular Fluorescence Viewer (minipcr bio, USA). Best conditions tested showed a limit of detection (LoD) with 95% accuracy (19/20 replicates) of 5 and 20 parasites/mL, respectively for heparinized fluid blood or DBS samples. FTA cards showed better specificity than Whatman 903 filter paper. CONCLUSIONS/SIGNIFICANCE: Procedures to operate LAMP reactions from small volumes of fluid blood or DBS in FTA were standardized for LAMP detection of T. cruzi DNA. Our results encourage prospective studies in neonates born to seropositive women or oral Chagas disease outbreaks to operationally evaluate the method in the field.
Asunto(s)
Enfermedad de Chagas , Trypanosoma cruzi , Recién Nacido , Humanos , Femenino , Trypanosoma cruzi/genética , Estudios Prospectivos , Sensibilidad y Especificidad , Técnicas de Amplificación de Ácido Nucleico/métodos , Enfermedad de Chagas/diagnóstico , Enfermedad de Chagas/congénitoRESUMEN
BACKGROUND: Chagas disease (CD), caused by Trypanosoma cruzi, represents a health threat to around 20 million people worldwide. Side effects of benznidazole (Bzn) cause 15-20% of patients to discontinue their treatment. Evidence has increased in favor of the use of drug combinations to improve the efficacy and tolerance of the treatment. Natural products are well known to provide structures that could serve as new drugs or scaffolds for CD treatment. Spp of the Amaryllidoideae sub family of Amaryllidaceae family are known by their bioactives alkaloids, which have been reported by their antiparasitic activities. PURPOSE: To evaluate the anti-T. cruzi activity of the isolated alkaloid candimine (Cnd) from Hippeastrum escoipense Slanis & Huaylla; and to assess the combination effect between Cnd and Bzn against different life stages of T. cruzi parasites. METHODS: The chemical profile of H. escoipense alkaloids extract (AE-H. escoipense), including quantitation of Cnd was performed through GC/MS and UPLC-MS/MS techniques. Subsequently, Cnd was isolated using Shephadex LH-20. Then, the AE-H. escoipense and Cnd were tested against T. cruzi, (epimastigotes, trypomastigotes, and amastigotes) by in vitro proliferation and viability assays. The cytotoxicity was evaluated against Vero and HepG2 mammalian cells. The ultrastructural analysis was perform by transmission electron microscopy (TEM) and mitochondrial activity was carried out by MTT assay. Drug combination assay between Cnd and Bzn was evaluated using the Chou-Talalay method. RESULTS: The AE-H. escoipense and Cnd showed high and specific anti-T. cruzi activity, comparable to Bzn. Cnd induces ultrastructural changes in T. cruzi, such as vacuolization, membrane blebs, and increased mitochondrial activity. Regarding the interaction between Cnd and Bzn, it generates synergism in the combinations of 0.25×IC50 in epimastigotes, 2×IC50 in trypomastigotes+amastigotes, and 0.25, 2, and 4×IC50 in amastigotes. CONCLUSION: The synergism between Cnd and Bzn indicates that the combination at the concentration of 4×IC50 could be useful as an effective new therapy against CD in the chronic stage. Thus, Cnd isolated from the leaves of H. escoipense emerges as potential candidate for the development of a new drug for the treatment of CD.
Asunto(s)
Alcaloides , Amaryllidaceae , Enfermedad de Chagas , Tripanocidas , Trypanosoma cruzi , Animales , Humanos , Cromatografía Liquida , Espectrometría de Masas en Tándem , Enfermedad de Chagas/tratamiento farmacológico , Alcaloides/farmacología , Tripanocidas/farmacología , MamíferosRESUMEN
Chagas disease is the most important protozoan infection in the Americas, and constitutes a significant public health concern throughout the world. Development of new medications against its etiologic agent, Trypanosoma cruzi, has been traditionally slow and difficult, lagging in comparison with diseases caused by other kinetoplastid parasites. Among the factors that explain this are the incompletely understood mechanisms of pathogenesis of T. cruzi infection and its complex set of interactions with the host in the chronic stage of the disease. These demand the performance of a variety of in vitro and in vivo assays as part of any drug development effort. In this review, we discuss recent breakthroughs in the understanding of the parasite's life cycle and their implications in the search for new chemotherapeutics. For this, we present a framework to guide drug discovery efforts against Chagas disease, considering state-of-the-art preclinical models and recently developed tools for the identification and validation of molecular targets.
RESUMEN
Mounting a balanced and robust humoral immune response is of utmost importance for reducing the infectivity of Trypanosoma cruzi. While the role of such a response in controlling the infection is well known, there is a lack of tools that can be used to quickly evaluate it. We developed a serum parasite inhibition assay (to evaluate changes in the parasite infection after exposing infective T. cruzi trypomastigotes to serum samples from infected patients). It is based on Vero cells as the hosts and the Tulahuen ß-galactosidase parasite strain, genetically engineered to be quantifiable by spectrophotometry. In parallel, we developed an in-house ELISA to correlate the anti-T. cruzi antibody titres of the clinical samples with their observed anti-parasitic effect in the serum parasite inhibition assay. Serum samples from chronically T. cruzi-infected patients significantly inhibited parasite invasion in a titre-dependant manner, regardless of the patient's clinical status, compared to samples from the non-infected controls. In addition, there was a clear correlation between the reactivity of the samples to the whole-parasite lysates by ELISA and the inhibitory effect. The results of this work confirm the previously described anti-parasitic effect of the serum of individuals exposed to T. cruzi and present a framework for its large-scale evaluation in further studies. The serum parasite inhibition assay represents a reproducible way to evaluate the intensity and anti-parasitic effect of humoral responses against T. cruzi, which could be applied to the evaluation of candidate antigens/epitopes in the design of Chagas disease vaccine candidates.
RESUMEN
INTRODUCTION: Chagas disease, caused by parasite Trypanosoma cruzi, is the most important neglected tropical disease in the Americas. Two drugs are available for treatment, but access to them is challenging, in part due to complex diagnostic algorithms. These are stage-dependent, involve multiple tests, and are ill-adapted to the reality of vast areas where the disease is endemic. Molecular and serologic tools are used to detect acute and chronic infections, with the performance of the latter showing geographic differences. Breakthroughs in the development of new diagnostic tools include the validation of a loop-mediated isothermal amplification assay for acute infections (T. cruzi-LAMP), and the regional validation of several rapid diagnostic tests (RDTs) for chronic infection, which simplify testing in resource-limited settings. The literature search was carried out in the MEDLINE database until 1 August 2023. AREAS COVERED: This review outlines existing algorithms, and proposes new ones focused on point-of-care testing. EXPERT OPINION: Integrating point-of-care testing into existing diagnostic algorithms in certain endemic areas will increase access to timely diagnosis and treatment. However, additional research is needed to validate the use of these techniques across a wider geography, and to better understand the cost-effectiveness of their large-scale implementation.
Asunto(s)
Enfermedad de Chagas , Trypanosoma cruzi , Humanos , Enfermedad de Chagas/diagnóstico , Enfermedad de Chagas/epidemiología , Pruebas en el Punto de Atención , Prueba de Diagnóstico Rápido , AlgoritmosRESUMEN
BACKGROUND: Chagas disease, caused by the parasite Trypanosoma cruzi, is a neglected infectious disease that exerts the highest public health burden in the Americas. There are two anti-parasitic drugs approved for its treatment-benznidazole and nifurtimox-but the absence of biomarkers to early assess treatment efficacy hinders patients´ follow-up. METHODOLOGY/PRINCIPAL FINDINGS: We conducted a longitudinal, observational study among a cohort of 106 chronically T. cruzi-infected patients in Cochabamba (Bolivia) who completed the recommended treatment of benznidazole. Participants were followed-up for five years, in which we collected clinical and serological data, including yearly electrocardiograms and optical density readouts from two ELISAs (total and recombinant antigens). Descriptive and statistical analyses were performed to understand trends in data, as well as the relationship between clinical symptoms and serological evolution after treatment. Our results showed that both ELISAs documented average declines up to year three and slight inclines for the following two years. The recorded clinical parameters indicated that most patients did not have any significant changes to their cardiac or digestive symptoms after treatment, at least in the timeframe under investigation, while a small percentage demonstrated either a regression or progression in symptoms. Only one participant met the "cure criterion" of a negative serological readout for both ELISAs by the final year. CONCLUSIONS/SIGNIFICANCE: The study confirms that follow-up of benznidazole-treated T. cruzi-infected patients should be longer than five years to determine, with current tools, if they are cured. In terms of serological evolution, the single use of a total antigen ELISA might be a more reliable measure and suffice to address infection status, at least in the region of Bolivia where the study was done. Additional work is needed to develop a test-of-cure for an early assessment of drugs´ efficacy with the aim of improving case management protocols.