Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(21)2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37960399

RESUMEN

Wireless Sensor Networks (WSNs) contain several small, autonomous sensor nodes (SNs) able to process, transfer, and wirelessly sense data. These networks find applications in various domains like environmental monitoring, industrial automation, healthcare, and surveillance. Node Localization (NL) is a major problem in WSNs, aiming to define the geographical positions of sensors correctly. Accurate localization is essential for distinct WSN applications comprising target tracking, environmental monitoring, and data routing. Therefore, this paper develops a Chaotic Mapping Lion Optimization Algorithm-based Node Localization Approach (CMLOA-NLA) for WSNs. The purpose of the CMLOA-NLA algorithm is to define the localization of unknown nodes based on the anchor nodes (ANs) as a reference point. In addition, the CMLOA is mainly derived from the combination of the tent chaotic mapping concept into the standard LOA, which tends to improve the convergence speed and precision of NL. With extensive simulations and comparison results with recent localization approaches, the effectual performance of the CMLOA-NLA technique is illustrated. The experimental outcomes demonstrate considerable improvement in terms of accuracy as well as efficiency. Furthermore, the CMLOA-NLA technique was demonstrated to be highly robust against localization error and transmission range with a minimum average localization error of 2.09%.

2.
PeerJ Comput Sci ; 10: e2027, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38855228

RESUMEN

This article explores detecting and categorizing network traffic data using machine-learning (ML) methods, specifically focusing on the Domain Name Server (DNS) protocol. DNS has long been susceptible to various security flaws, frequently exploited over time, making DNS abuse a major concern in cybersecurity. Despite advanced attack, tactics employed by attackers to steal data in real-time, ensuring security and privacy for DNS queries and answers remains challenging. The evolving landscape of internet services has allowed attackers to launch cyber-attacks on computer networks. However, implementing Secure Socket Layer (SSL)-encrypted Hyper Text Transfer Protocol (HTTP) transmission, known as HTTPS, has significantly reduced DNS-based assaults. To further enhance security and mitigate threats like man-in-the-middle attacks, the security community has developed the concept of DNS over HTTPS (DoH). DoH aims to combat the eavesdropping and tampering of DNS data during communication. This study employs a ML-based classification approach on a dataset for traffic analysis. The AdaBoost model effectively classified Malicious and Non-DoH traffic, with accuracies of 75% and 73% for DoH traffic. The support vector classification model with a Radial Basis Function (SVC-RBF) achieved a 76% accuracy in classifying between malicious and non-DoH traffic. The quadratic discriminant analysis (QDA) model achieved 99% accuracy in classifying malicious traffic and 98% in classifying non-DoH traffic.

3.
PeerJ Comput Sci ; 10: e2264, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39314701

RESUMEN

Collective intelligence systems like Chat Generative Pre-Trained Transformer (ChatGPT) have emerged. They have brought both promise and peril to cybersecurity and privacy protection. This study introduces novel approaches to harness the power of artificial intelligence (AI) and big data analytics to enhance security and privacy in this new era. Contributions could explore topics such as: leveraging natural language processing (NLP) in ChatGPT-like systems to strengthen information security; evaluating privacy-enhancing technologies to maximize data utility while minimizing personal data exposure; modeling human behavior and agency to build secure and ethical human-centric systems; applying machine learning to detect threats and vulnerabilities in a data-driven manner; using analytics to preserve privacy in large datasets while enabling value creation; crafting AI techniques that operate in a trustworthy and explainable manner. This article advances the state-of-the-art at the intersection of cybersecurity, privacy, human factors, ethics, and cutting-edge AI, providing impactful solutions to emerging challenges. Our research presents a revolutionary approach to malware detection that leverages deep learning (DL) based methodologies to automatically learn features from raw data. Our approach involves constructing a grayscale image from a malware file and extracting features to minimize its size. This process affords us the ability to discern patterns that might remain hidden from other techniques, enabling us to utilize convolutional neural networks (CNNs) to learn from these grayscale images and a stacking ensemble to classify malware. The goal is to model a highly complex nonlinear function with parameters that can be optimized to achieve superior performance. To test our approach, we ran it on over 6,414 malware variants and 2,050 benign files from the MalImg collection, resulting in an impressive 99.86 percent validation accuracy for malware detection. Furthermore, we conducted a classification experiment on 15 malware families and 13 tests with varying parameters to compare our model to other comparable research. Our model outperformed most of the similar research with detection accuracy ranging from 47.07% to 99.81% and a significant increase in detection performance. Our results demonstrate the efficacy of our approach, which unlocks the hidden patterns that underlie complex systems, advancing the frontiers of computational security.

4.
Biomimetics (Basel) ; 8(6)2023 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-37887580

RESUMEN

In recent research, fake news detection in social networking using Machine Learning (ML) and Deep Learning (DL) models has gained immense attention. The current research article presents the Bio-inspired Artificial Intelligence with Natural Language Processing Deceptive Content Detection (BAINLP-DCD) technique for social networking. The goal of the proposed BAINLP-DCD technique is to detect the presence of deceptive or fake content on social media. In order to accomplish this, the BAINLP-DCD algorithm applies data preprocessing to transform the input dataset into a meaningful format. For deceptive content detection, the BAINLP-DCD technique uses a Multi-Head Self-attention Bi-directional Long Short-Term Memory (MHS-BiLSTM) model. Finally, the African Vulture Optimization Algorithm (AVOA) is applied for the selection of optimum hyperparameters of the MHS-BiLSTM model. The proposed BAINLP-DCD algorithm was validated through simulation using two benchmark fake news datasets. The experimental outcomes portrayed the enhanced performance of the BAINLP-DCD technique, with maximum accuracy values of 92.19% and 92.56% on the BuzzFeed and PolitiFact datasets, respectively.

5.
Biomimetics (Basel) ; 8(7)2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37999179

RESUMEN

Breast cancer (BC) is a prevalent disease worldwide, and accurate diagnoses are vital for successful treatment. Histopathological (HI) inspection, particularly the detection of mitotic nuclei, has played a pivotal function in the prognosis and diagnosis of BC. It includes the detection and classification of mitotic nuclei within breast tissue samples. Conventionally, the detection of mitotic nuclei has been a subjective task and is time-consuming for pathologists to perform manually. Automatic classification using computer algorithms, especially deep learning (DL) algorithms, has been developed as a beneficial alternative. DL and CNNs particularly have shown outstanding performance in different image classification tasks, including mitotic nuclei classification. CNNs can learn intricate hierarchical features from HI images, making them suitable for detecting subtle patterns related to the mitotic nuclei. In this article, we present an Enhanced Pelican Optimization Algorithm with a Deep Learning-Driven Mitotic Nuclei Classification (EPOADL-MNC) technique on Breast HI. This developed EPOADL-MNC system examines the histopathology images for the classification of mitotic and non-mitotic cells. In this presented EPOADL-MNC technique, the ShuffleNet model can be employed for the feature extraction method. In the hyperparameter tuning procedure, the EPOADL-MNC algorithm makes use of the EPOA system to alter the hyperparameters of the ShuffleNet model. Finally, we used an adaptive neuro-fuzzy inference system (ANFIS) for the classification and detection of mitotic cell nuclei on histopathology images. A series of simulations took place to validate the improved detection performance of the EPOADL-MNC technique. The comprehensive outcomes highlighted the better outcomes of the EPOADL-MNC algorithm compared to existing DL techniques with a maximum accuracy of 97.83%.

6.
Biomimetics (Basel) ; 8(7)2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37999176

RESUMEN

Recently, the usage of remote sensing (RS) data attained from unmanned aerial vehicles (UAV) or satellite imagery has become increasingly popular for crop classification processes, namely soil classification, crop mapping, or yield prediction. Food crop classification using RS images (RSI) is a significant application of RS technology in agriculture. It involves the use of satellite or aerial imagery to identify and classify different types of food crops grown in a specific area. This information can be valuable for crop monitoring, yield estimation, and land management. Meeting the criteria for analyzing these data requires increasingly sophisticated methods and artificial intelligence (AI) technologies provide the necessary support. Due to the heterogeneity and fragmentation of crop planting, typical classification approaches have a lower classification performance. However, the DL technique can detect and categorize crop types effectively and has a stronger feature extraction capability. In this aspect, this study designed a new remote sensing imagery data analysis using the marine predators algorithm with deep learning for food crop classification (RSMPA-DLFCC) technique. The RSMPA-DLFCC technique mainly investigates the RS data and determines the variety of food crops. In the RSMPA-DLFCC technique, the SimAM-EfficientNet model is utilized for the feature extraction process. The MPA is applied for the optimal hyperparameter selection process in order to optimize the accuracy of SimAM-EfficientNet architecture. MPA, inspired by the foraging behaviors of marine predators, perceptively explores hyperparameter configurations to optimize the hyperparameters, thereby improving the classification accuracy and generalization capabilities. For crop type detection and classification, an extreme learning machine (ELM) model can be used. The simulation analysis of the RSMPA-DLFCC technique is performed on two benchmark datasets. The extensive analysis of the results portrayed the higher performance of the RSMPA-DLFCC approach over existing DL techniques.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA