Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Methods ; 219: 82-94, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37778659

RESUMEN

Artificial intelligence (AI), particularly deep learning as a subcategory of AI, provides opportunities to accelerate and improve the process of discovering and developing new drugs. The use of AI in drug discovery is still in its early stages, but it has the potential to revolutionize the way new drugs are discovered and developed. As AI technology continues to evolve, it is likely that AI will play an even greater role in the future of drug discovery. AI is used to identify new drug targets, design new molecules, and predict the efficacy and safety of potential drugs. The inclusion of AI in drug discovery can screen millions of compounds in a matter of hours, identifying potential drug candidates that would have taken years to find using traditional methods. AI is highly utilized in the pharmaceutical industry by optimizing processes, reducing waste, and ensuring quality control. This review covers much-needed topics, including the different types of machine-learning techniques, their applications in drug discovery, and the challenges and limitations of using machine learning in this field. The state-of-the-art of AI-assisted pharmaceutical discovery is described, covering applications in structure and ligand-based virtual screening, de novo drug creation, prediction of physicochemical and pharmacokinetic properties, drug repurposing, and related topics. Finally, many obstacles and limits of present approaches are outlined, with an eye on potential future avenues for AI-assisted drug discovery and design.


Asunto(s)
Inteligencia Artificial , Aprendizaje Automático , Diseño de Fármacos , Descubrimiento de Drogas/métodos , Preparaciones Farmacéuticas
2.
Int J Pharm ; 650: 123609, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-37972672

RESUMEN

Restoring the lost bioelectrical signal transmission along with the appropriate microenvironment is one of the major clinical challenges in spinal cord regeneration. In the current research, we developed a polysaccharide-based protein composite Multiwalled Carbon Nanotubes (MWCNTs)/ Collagen (Col)/ Hyaluronic acid (HA) composite with Hesperidin (Hes) natural compound to investigate its combined therapeutic effect along with biocompatibility, antioxidant activity, and electrical conductivity. The multifunctional composites were characterized via FT-IR, XRD, SEM, HR-TEM, BET, C.V, and EIS techniques. The electrical conductivity and modulus of the MWCNT-Col-HA-Hes were 0.06 S/cm and 12.3 kPa, similar to the native spinal cord. The in-vitro Cytotoxicity, cell viability, antioxidant property, and cell migration ability of the prepared composites were investigated with a PC-12 cell line. In-vitro studies revealed that the multifunctional composites show higher cell viability, antioxidant, and cell migration properties than the control cells. Reduction of ROS level indicates that the Hes presence in the composite could reduce the cell stress by protecting it from oxidative damage and promoting cell migration towards the lesion site. The developed multifunctional composite can provide the antioxidant microenvironment with compatibility and mimic the native spinal cord by providing appropriate conductivity and mechanical strength for spinal cord tissue regeneration.


Asunto(s)
Hesperidina , Nanotubos de Carbono , Regeneración de la Medula Espinal , Ácido Hialurónico , Espectroscopía Infrarroja por Transformada de Fourier , Antioxidantes/farmacología , Colágeno
3.
Adv Protein Chem Struct Biol ; 138: 275-300, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38220428

RESUMEN

Osteosarcoma is a malignant osseous neoplasm. Osteosarcoma is a primary bone malignancy capable of producing osteoid tissue or immature bones. A subsequent malignant degeneration of the primary bone pathology occurs less frequently in adults. The over-expression of several proteins, including Heat shock proteins, Cofilin, Annexins, Insulin-like growth factor, transforming growth factor-ß, Receptor tyrosine kinase, Ezrin, Runx2, SATB2, ATF4, Annexins, cofilin, EGFR, VEGF, retinoblastoma 1 (Rb1) and secreted protein, has been associated to the development and progression of osteosarcoma. These proteins are involved in cell adhesion, migration, invasion, and the control of cell cycle and apoptosis. In genomic studies, osteosarcoma has been associated with several genetic abnormalities, including chromosomal rearrangements, gene mutations, and gene amplifications. These differentially expressed proteins could be used as early identification biomarkers or treatment targets. Proteomics and genomics play significant parts in enhancing our molecular understanding of osteosarcoma, and their integration provides essential insights into this aggressive bone cancer. This review will discuss the tumour biology that has assisted in helping us better understand the causes of osteosarcoma and how they could potentially be used to find new treatment targets and enhance the survival rate for osteosarcoma patients.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Adulto , Humanos , Proteómica , Osteosarcoma/genética , Osteosarcoma/metabolismo , Osteosarcoma/patología , Genómica , Neoplasias Óseas/genética , Neoplasias Óseas/metabolismo , Neoplasias Óseas/patología , Factores Despolimerizantes de la Actina/metabolismo , Anexinas
4.
Adv Protein Chem Struct Biol ; 141: 67-86, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38960487

RESUMEN

Metalloproteins play a crucial role in regulating different aspects of the immune system in humans. They have various functions in immunity, including recognizing and presenting antigens, aiding in the movement and effectiveness of immune cells, and facilitating interactions between the host and pathogens. Understanding how these proteins work can help us develop new methods to control the immune response in different diseases. Metalloproteins contain metal ions in their structure, which allows them to perform these diverse functions. They encompass a wide range of enzymes, signaling molecules, and structural proteins that utilize metal ions as cofactors for their activities. Examples of metalloproteins include superoxide dismutase, catalase, and metalloproteases, which regulate oxidative stress, inflammation, and tissue remodelling processes associated with immune activation. By studying their functions and the effects of their dysfunction, researchers can develop strategies to improve immune function and combat various diseases. This review explores the diverse functions of metalloproteins in immune processes, highlighting their significance in both health and disease.


Asunto(s)
Metaloproteínas , Humanos , Metaloproteínas/química , Metaloproteínas/inmunología , Metaloproteínas/metabolismo , Animales
5.
Mol Neurobiol ; 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38789895

RESUMEN

AT1 receptor blockers (ARBs) are commonly used drugs to treat cardiovascular disease and hypertension, but research on their impact on brain disorders is unattainable. Valsartan (VAL) is a drug that specifically blocks AT1 receptor. Despite the previous evidence for VAL to provide neuroprotection in case of ischemic reperfusion injury, evaluation of their potential in mitigating mitochondrial dysfunction that causes neuronal cell death and neurobehavioral impairment remains unknown. The aim of this study was to evaluate the therapeutic effect of repurposed drug VAL against ischemic reperfusion injury-induced neuronal alternation. tMCAO surgery was performed to induce focal cerebral ischemic reperfusion injury. Following ischemic reperfusion injury, we analyzed the therapeutic efficacy of VAL by measuring the infarct volume, brain water content, mitochondrial oxidative stress, mitochondrial membrane potential, histopathological architecture, and apoptotic marker protein. Our results showed that VAL administrations (5 and 10 mg/kg b.wt.) mitigated the brain damage, enhanced neurobehavioral outcomes, and alleviated mitochondrial-mediated oxidative damage. In addition to this, our findings demonstrated that VAL administration inhibits neuronal apoptosis by restoring the mitochondrial membrane potential. A follow-up investigation demonstrated that VAL induces BDNF expression and promoted ischemic tolerance via modulating the Akt/p-Creb signaling pathway. In summary, our results suggested that VAL administration provided neuroprotection, ameliorated mitochondrial dysfunction, preserved the integrity of neurons, and lead to functional improvement after ischemic reperfusion injury.

6.
J Biomol Struct Dyn ; : 1-11, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37642991

RESUMEN

Autoinducer-2 can mediate inter- and intra-species communication signal between bacteria and these signals from AI-2 is noted from limited species of bacteria. In humans, S. pyogenes is a pathogen that causes a wide range of illnesses and can survive in the host system and transmit infection. The process by which S. pyogenes acquires the competence to live and disseminate infection remains unknown. We hypothesized that AI-2 and their receptors would play a significant role during infection, and for that present investigation provides the experimental and molecular insights. In the absence of details about the receptor LuxP and LuxQ, the screening approach provides supporting insights. The evolutionary relationship and similarities of the PBP domain (Spy 1535) and the signal transmission PDZ domain (Spy 1536) were studied in relation to their counterparts in other bacteria. Molecular docking and modeling confirmed the domain-enhanced specificity for AI-2 binding. In vitro studies showed that AI-2, which is present in the cell-free supernatant of S. pyogenes, regulates luminescence in P. luminous and biofilm development in E. coli using the LuxS reporter genes. Examination of S. pyogenes gene expression revealed modulation of virulence genes when the pathogen was exposed to V. harveyi HSL and AI-2. Therefore, S. pyogenes pathogenicity is sequentially regulated by AI-2 it acquires from other commensal bacteria. Overall, this study lays the groundwork for understanding the signalling mechanism from AI-2, which are critical to the pathogenic mechanism of S. pyogenes.Communicated by Ramaswamy H. Sarma.

7.
Antibiotics (Basel) ; 12(2)2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36830115

RESUMEN

Staphylococcus aureus (S. aureus) is a serious infection-causing pathogen in humans and animal. In particular, methicillin-resistant S. aureus (MRSA) is considered one of the major life-threatening pathogens due to its rapid resistance to several antibiotics in clinical practice. MRSA strains have recently been isolated in a number of animals utilized in food production processes, and these species are thought to be the important sources of the spread of infection and disease in both humans and animals. The main objective of the current study was to assess the prevalence of drug-resistant S. aureus, particularly vancomycin-resistant S. aureus (VRSA) and MRSA, by molecular methods. To address this issue, a total of three hundred samples (200 meat samples from cattle and sheep carcasses (100 of each), 50 hand swabs, and 50 stool samples from abattoir workers) were obtained from slaughterhouses in Egypt provinces. In total, 19% S. aureus was isolated by standard culture techniques, and the antibiotic resistance was confirmed genotypically by amplification nucA gen. Characteristic resistance genes were identified by PCR with incidence of 31.5%, 19.3%, 8.7%, and 7% for the mecA, VanA, ermA, and tet L genes, respectively, while the aac6-aph gene was not found in any of the isolates. In this study, the virulence genes responsible for S. aureus' resistance to antibiotics had the highest potential for infection or disease transmission to animal carcasses, slaughterhouse workers, and meat products.

8.
Biomedicines ; 11(2)2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36830857

RESUMEN

This study effectively reports the influence of experimental incubation period on the sol-gel production of husk-like zinc oxide nanoparticles (ZNPs) and their anti-cancerous abilities. The surface morphology of ZNPs was studied with the help of SEM. With the use of TEM, the diameter range of the ZNPs was estimated to be ~86 and ~231 nm for ZNPA and ZNPB, prepared by incubating zinc oxide for 2 and 10 weeks, respectively. The X-ray diffraction (XRD) investigation showed that ZNPs had a pure wurtzite crystal structure. On prolonging the experimental incubation, a relative drop in aspect ratio was observed, displaying a distinct blue-shift in the UV-visible spectrum. Furthermore, RBC lysis assay results concluded that ZNPA and ZNPB both demonstrated innoxious nature. As indicated by MTT assay, reactive oxygen species (ROS) release, and chromatin condensation investigations against the human epidermoid carcinoma (HEC) A431 cells, ZNPB demonstrated viable relevance to chemotherapy. Compared to ZNPB, ZNPA had a slightly lower IC50 against A431 cells due to its small size. This study conclusively describes a simple, affordable method to produce ZNP nano-formulations that display significant cytotoxicity against the skin cancer cell line A431, suggesting that ZNPs may be useful in the treatment of cancer.

9.
Brief Funct Genomics ; 22(2): 227-240, 2023 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-36827221

RESUMEN

SARS-CoV-2 encodes eight accessory proteins, one of which, ORF8, has a poorly conserved sequence with SARS-CoV and its role in viral pathogenicity has recently been identified. ORF8 in SARS-CoV-2 has a unique functional feature that allows it to form a dimer structure linked by a disulfide bridge between Cys20 and Cys20 (S-S). This study provides structural characterization of natural mutant variants as well as the identification of potential drug candidates capable of binding directly to the interchain disulfide bridge. The lead compounds reported in this work have a tendency to settle in the dimeric interfaces by direct interaction with the disulfide bridge. These molecules may disturb the dimer formation and may have an inhibition impact on its potential functional role in host immune evasion and virulence pathogenicity. This work provides detailed insights on the sequence and structural variability through computational mutational studies, as well as potent drug candidates with the ability to interrupt the intermolecular disulfide bridge formed between Cys20 and Cys20. Furthermore, the interactions of ORF8 peptides complexed with MHC-1 is studied, and the binding mode reveals that certain ORF8 peptides bind to MHC-1 in a manner similar to other viral peptides. Overall, this study is a narrative of various computational approaches used to provide detailed structural insights into SARS-CoV-2 ORF8 interchain disulfide bond disruptors.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Dimerización
10.
Chem Biol Interact ; 374: 110383, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36754228

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) is a life-threatening superbug causing infectious diseases such as pneumonia, endocarditis, osteomyelitis, etc. Conventional antibiotics are ineffective against MRSA infections due to their resistance mechanism against the antibiotics. The Penicillin Binding Protein (PBP2a) inhibits the activity of antibiotics by hydrolyzing the ß-lactam ring. Thus, alternate treatment methods are needed for the treatment of MRSA infections. Natural bioactive compounds exhibit good inhibition efficiency against MRSA infections by hindering its enzymatic mechanism, efflux pump system, etc. The present work deals with identifying potential and non-toxic natural bioactive compounds (ligands) through molecular docking studies through StarDrop software. Various natural bioactive compounds which are effective against MRSA infections were docked with the protein (6VVA). The ligands having good binding energy values and pharmacokinetic and drug-likeness properties have been illustrated as potential ligands for treating MRSA infections. From this exploration, Luteolin, Kaempferol, Chlorogenic acid, Sinigrin, Zingiberene, 1-Methyl-4-(6-methylhepta-1,5-dien-2-yl)cyclohex-1-ene, and Curcumin have found with good binding energies of -8.6 kcal/mol, -8.4 kcal/mol, -8.2 kcal/mol, -7.5 kcal/mol, -7.4 kcal/mol, -7.3 kcal/mol, and -7.2 kcal/mol, respectively.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Staphylococcus aureus Resistente a Meticilina/metabolismo , Simulación del Acoplamiento Molecular , Antibacterianos/química , beta-Lactamas/metabolismo , beta-Lactamas/farmacología , Proteínas de Unión a las Penicilinas/química , Proteínas de Unión a las Penicilinas/metabolismo , Pruebas de Sensibilidad Microbiana
11.
Int J Biol Macromol ; 248: 125799, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37451381

RESUMEN

Breast cancer is the most frequent cancer in women; however, it is curable in most cases (up to 80 %) when detected and treated at an early non-metastatic stage. Nanotechnology has led to the development of potential chemotherapeutic techniques, particularly for tumor treatment. Nanotechnology has therapeutic and pharmaceutical applications. Chitosan, a natural polymer derived from chitin, has been extensively studied for its potential applications in a wide range of fields. This includes medicine for its anticancer properties. In the present study, Chitosan-encapsulated-NiO-TiO2-Farnesol hybrid nanomaterials (CNTF HNMs) were synthesized and characterized using several techniques, including electron microscopy (TEM, FE-SEM), spectroscopy (UV-visible [UV-Vis], Fourier Transform Infrared [FT-IR] spectroscopy, and photoluminescence [PL]), energy-dispersive X-ray spectroscopy (EDX) composition analysis, X-ray diffraction, and dynamic light scattering (DLS) analyses. With an estimated average crystallite size of 34.8 nm, the face-cantered cubic crystalline structure of the CNTF HNMs is identified. Cell viability assay by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide), DAPI (4',6-diamidino-2-phenylindole) staining, dual AO/EtBr (Acridine Orange/ Ethidium bromide), JC-1 (5,5,6,6'-tetrachloro-1,1',3,3' tetraethylbenzimi-dazoylcarbocyanine iodide), DCFH-DA (Dichloro-dihydro-fluorescein diacetate), Annexin V-FITC (Fluorescein isothiocyanate) /PI (Propidium Iodide), and cell cycle study was used to assess the ability of nanoparticles (NPs) to kill MDA-MB-231 cells. The CNTF HNMs had high antibacterial effectiveness against multi-drug resistant extended-spectrum beta-lactamases (ESBL)-producing gram-negative bacterial pathogens and reference strains. The findings suggest that NPs increased the number of reactive oxygen species (ROS), changed the Δψm, and initiated apoptosis. There is enormous potential for CNTF HNMs as both antibacterial and anticancer agents.


Asunto(s)
Antiinfecciosos , Neoplasias de la Mama , Quitosano , Nanopartículas del Metal , Femenino , Humanos , Farnesol , Quitosano/farmacología , Línea Celular Tumoral , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Espectroscopía Infrarroja por Transformada de Fourier , Factor Neurotrófico Ciliar , Nanopartículas del Metal/química , Antibacterianos/química
12.
Appl Biochem Biotechnol ; 195(1): 519-533, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36098931

RESUMEN

Listeria monocytogenes have the ability to form biofilms, which aid in the contamination of food and the evasion of antimicrobials. Consumption of L. monocytogenes laden food can promote mild to severe infection in humans and cause serious health issues. Therefore, biofilm development by L. monocytogenes is considered to be a major concern for both healthcare and food safety. This study attempted to target chorismate synthase, an essential protein predicted to be involved in the biofilm pathway. Nigella sativa is renowned for its applications in folk medicine; hence, bioactive ingredients reported were used for molecular docking studies. In the absence of a three-dimensional structure of chorismate synthase from L. monocytogenes, a homology model was generated using the Modeller program. A model with the highest DOPE score was chosen and validated. The reliable model was subjected to docking studies with 30 ligands from N. sativa. From this approach, α-longipinene was unveiled as the best hit. Further in vitro studies demonstrated the antibiofilm potential of α-longipinene against L. monocytogenes. Overall, the study reveals lead molecules from N. sativa as promising antibiofilm agents against L. monocytogenes. Hence, extended investigation with lead molecules will provide sustainable strategies to prevent biofilm-mediated problems due to L. monocytogenes.


Asunto(s)
Listeria monocytogenes , Nigella sativa , Humanos , Listeria monocytogenes/metabolismo , Simulación del Acoplamiento Molecular , Biopelículas
13.
Nanomaterials (Basel) ; 13(7)2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-37049321

RESUMEN

Nanotechnology has been recognized as a highly interdisciplinary field of the twenty-first century, with diverse applications in biotechnology, healthcare, and material science. One of the most commonly employed non-toxic nanoparticles, magnesium oxide nanoparticles (MgO NPs), is simple, inexpensive, biocompatible, and biodegradable. Several researchers are interested in the biosynthesis process of MgO NPs through chemical and physical approaches. This is because of their simplicity, affordability, and environmental safety. In the current study, green MgO-Chitosan-Pluronic F127-Escin (MCsPFE) NPs have been synthesized and characterized via various techniques like UV-visible, Fourier-transform infrared spectroscopy, Energy dispersive X-ray composition analysis, Transmission electron microscopy, field emission scanning electron microscopy, X-ray Diffraction, Photoluminescence, and Dynamic light scattering analyses. The average crystallite size of MCsPFE NPs was 46 nm, and a face-centered cubic crystalline structure was observed. Further, the antimicrobial effectiveness of NPs against diverse pathogens has been assessed. The cytotoxic potential of the nanoparticles against MDA-MB-231 cell lines was evaluated using the MTT test, dual AO/EB, JC-1, DCFH-DA, and DAPI staining procedures. High antimicrobial efficacy of MCsPFE NPs against Gram-positive and Gram-negative bacterial strains as well as Candida albicans was observed. The findings concluded that the NPs augmented the ROS levels in the cells and altered the Δψm, leading to the initiation of the intrinsic apoptotic cell death pathway. Thus, green MCsPFE NPs possess immense potential to be employed as an effective antimicrobial and anticancer treatment option.

14.
Life Sci ; 333: 122139, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37783266

RESUMEN

AIMS: Pain is a profoundly debilitating symptom in cancer patients, leading to disability, immobility, and a marked decline in their quality of life. This study aimed to investigate the potential roles of miR-199a-3p in a murine model of bone cancer pain induced by tumor cell implantation in the medullary cavity of the femur. MATERIALS AND METHODS: We assessed pain-related behaviors, including the paw withdrawal mechanical threshold (PWMT) and the number of spontaneous flinches (NSF). To investigate miRNA expression and its targets in astrocytes, we employed a combination of RNA-seq analysis, qRT-PCR, Western blotting, EdU, TUNEL, ChIP, ELISA, and luciferase reporter assays in mice (C3H/HeJ) with bone cancer pain and control groups. KEY FINDINGS: On days 10, 14, 21, and 28 post-surgery, we observed significant differences in PWTL, PWMT, and NSF when compared to the sham group (P < 0.001). qRT-PCR assays and miRNA sequencing results confirmed reduced miR-199a-3p expression in astrocytes of mice with bone cancer pain. Gain- and loss-of-function experiments demonstrated that miR-199a-3p suppressed astrocyte activation and the expression of inflammatory cytokines. In vitro investigations revealed that miR-199a-3p mimics reduced the levels of inflammatory factors in astrocytes and MyD88/NF-κB proteins. Furthermore, treatment with a miR-199a-3p agonist resulted in reduced expression of MyD88, TAK1, p-p65, and inflammatory mediators, along with decreased astrocyte activation in the spinal cord. SIGNIFICANCE: Collectively, these findings demonstrate that upregulation of miR-199a-3p may offer a therapeutic avenue for mitigating bone cancer pain in mice by suppressing neuroinflammation and inhibiting the MyD88/NF-κB signaling pathway.


Asunto(s)
Neoplasias Óseas , Dolor en Cáncer , MicroARNs , Osteosarcoma , Animales , Humanos , Ratones , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Neoplasias Óseas/complicaciones , Neoplasias Óseas/genética , Dolor en Cáncer/genética , Modelos Animales de Enfermedad , Regulación Neoplásica de la Expresión Génica , Ratones Endogámicos C3H , MicroARNs/metabolismo , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Enfermedades Neuroinflamatorias , FN-kappa B/metabolismo , Osteosarcoma/genética , Calidad de Vida
15.
J Reprod Immunol ; 160: 104159, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37913711

RESUMEN

Oligospermia and asthenozoospermia, both frequent, can lead to male infertility. Oligospermia might be viewed as a milder form of azoospermia because the same mutations that produce azoospermia in some individuals also create oligospermia in other individuals. In this, we looked at different characteristics of oligospermia men, counting the level of apoptosis and a few related apoptotic and oxidative stress components, and compared them to solid controls. In this study, semen samples from healthy fertile men (n = 35) and oligospermia (n = 35) were collected, and sperm death rates in both groups were examined using flow cytometry. Also, gene expression of apoptotic and anti-apoptotic markers and miR-221 were investigated (Real-Time PCR). Moreover, for the evaluation of catalase and SOD activity and anti-inflammatory cytokines, including IL-10 and TGF-ß, the specific ELISA kits and procedures were applied. As a result, higher gene and protein expression levels of PTEN, P27, and P57 were observed in patients with oligospermia. In contrast, lower mRNA expression of AKT and miR-221 was detected in this group. In addition, IL-10, TGF-ß, and catalase activity were suppressed in the oligospermia group compared with healthy men samples. Moreover, the frequency of apoptosis of sperm cells is induced in patients. In conclusion, apoptosis-related markers, PTEN, and the measurement of significant and efficient oxidative stress markers like SOD and catalase in semen plasma could be considered as the critical diagnostic markers for oligospermia. Future studies will be better able to treat oligospermia by showing whether these indicators are rising or falling.


Asunto(s)
Azoospermia , MicroARNs , Oligospermia , Humanos , Masculino , Oligospermia/genética , Azoospermia/genética , Azoospermia/diagnóstico , Azoospermia/metabolismo , Catalasa/genética , Catalasa/metabolismo , Interleucina-10/metabolismo , Semen/metabolismo , Espermatozoides/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Superóxido Dismutasa/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
16.
Antibiotics (Basel) ; 11(5)2022 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-35625250

RESUMEN

Staphylococcus aureus (S. aureus) is a Gram-positive bacterium that may cause life-threatening diseases and some minor infections in living organisms. However, it shows notorious effects when it becomes resistant to antibiotics. Strain variants of bacteria, viruses, fungi, and parasites that have become resistant to existing multiple antimicrobials are termed as superbugs. Methicillin is a semisynthetic antibiotic drug that was used to inhibit staphylococci pathogens. The S. aureus resistant to methicillin is known as methicillin-resistant Staphylococcus aureus (MRSA), which became a superbug due to its defiant activity against the antibiotics and medications most commonly used to treat major and minor infections. Successful MRSA infection management involves rapid identification of the infected site, culture and susceptibility tests, evidence-based treatment, and appropriate preventive protocols. This review describes the clinical management of MRSA pathogenesis, recent developments in rapid diagnosis, and antimicrobial treatment choices for MRSA.

17.
Adv Protein Chem Struct Biol ; 130: 59-83, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35534116

RESUMEN

Enzymes, which are biological molecules, are constructed from polypeptide chains, and these molecules are activated through reaction mechanisms. It is the role of enzymes to speed up chemical reactions that are used to build or break down cell structures. Activation energy is reduced by the enzymes' selective binding of substrates in a protected environment. In enzyme tertiary structures, the active sites are commonly situated in a "cleft," which necessitates the diffusion of substrates and products. The amino acid residues of the active site may be far apart in the primary structure owing to the folding required for tertiary structure. Due to their critical role in substrate binding and attraction, changes in amino acid structure at or near the enzyme's active site usually alter enzyme activity. At the enzyme's active site, or where the chemical reactions occur, the substrate is bound. Enzyme substrates are the primary targets of the enzyme's active site, which is designed to assist in the chemical reaction. This chapter elucidates the summary of structure and chemistry of enzymes, their active site features, charges and role of water in the structures to clarify the biochemistry of the enzymes in the depth of atomic features.


Asunto(s)
Aminoácidos , Sitios de Unión , Dominio Catalítico , Cristalografía por Rayos X , Modelos Moleculares , Conformación Proteica , Especificidad por Sustrato
18.
Adv Protein Chem Struct Biol ; 131: 261-276, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35871893

RESUMEN

Numerous viruses have evolved mechanisms to inhibit or alter the host cell's apoptotic response as part of their coevolution with their hosts. The analysis of virus-host protein interactions require an in-depth understanding of both the viral and host protein structures and repertoires, as well as evolutionary mechanisms and pertinent biological facts. Throughout the course of a viral infection, there is constant battle for binding between virus and cellular proteins. Exogenous interfaces facilitating viral-host interactions are well known for constantly targeting and suppressing endogenous interfaces mediating intraspecific interactions, such as viral-viral and host-host connections. In these interactions, the protein-protein interactions (PPIs), are mostly shown as networks (protein interaction networks, PINs), with proteins represented as nodes and their interactions represented as edges. Host proteins with a higher degree of connectivity are more likely to interact with viral proteins. Due to technical advancements, three-dimensional interactions may now be visualized computationally utilizing molecular modeling and cryo-EM approaches. The uniqueness of viral domain repertoires, their evolution, and their activities during viral infection make viruses fascinating models for research. This chapter aims to provide readers a complete picture of the viral hijacking mechanism in protein-protein interactions.


Asunto(s)
Interacciones Microbiota-Huesped , Proteínas Virales , Humanos , Proteínas Virales/química
19.
J King Saud Univ Sci ; 34(4): 101924, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35233153

RESUMEN

The function of Immune control, haematopoiesis, and inflammation all depend on the cytokine Interleukin 6 (IL-6), and higher expression of IL-6 is seen in COVID-19 and other diseases. The immune protein IL-6 activation is dependent on binding interactions with IL-6Rα, mIL-6R, and sIL-6R for its cellular function. Termination of these reaction could benefit for controlling the over-expression in COVID-19 patients and that may arise as inhibitors for controlling COVID-19. Traditionally, the goat milk has been prescribed as medicine in ayurvedic practice and through this work, we have explored the benefits of peptides from goat milk as IL-6 inhibitors, and it have the potential of inhibiting the over expression of IL-6 and control the COVID-19 disease. Computational experiments have shown that goat peptides had strong interactions with IL-6, with higher scoring profiles and energy efficiency ranging from -6.00 kcal/mol to -9.00 kcal/mol in docking score and -39.00 kcal/mol in binding energy. Especially the YLGYLEQLLR, VLVLDTDYK and AMKPWIQPK peptides from goat milk holds better scoring and shows strong interactions were identified as the most potential IL-6 inhibitor candidates in this study. Peptides from Goat proteins, which are capable of binding to the IL-6 receptor with strong binding conformations, have no negative effects on other immune system proteins.

20.
PeerJ ; 10: e14227, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36353605

RESUMEN

Persistence of symptoms beyond the initial 3 to 4 weeks after infection is defined as post-acute COVID-19 syndrome (PACS). A wide range of neuropsychiatric symptoms like anxiety, depression, post-traumatic stress disorder, sleep disorders and cognitive disturbances have been observed in PACS. The review was conducted based on PRISMA-S guidelines for literature search strategy for systematic reviews. A cytokine storm in COVID-19 may cause a breach in the blood brain barrier leading to cytokine and SARS-CoV-2 entry into the brain. This triggers an immune response in the brain by activating microglia, astrocytes, and other immune cells leading to neuroinflammation. Various inflammatory biomarkers like inflammatory cytokines, chemokines, acute phase proteins and adhesion molecules have been implicated in psychiatric disorders and play a major role in the precipitation of neuropsychiatric symptoms. Impaired adult neurogenesis has been linked with a variety of disorders like depression, anxiety, cognitive decline, and dementia. Persistence of neuroinflammation was observed in COVID-19 survivors 3 months after recovery. Chronic neuroinflammation alters adult neurogenesis with pro-inflammatory cytokines supressing anti-inflammatory cytokines and chemokines favouring adult neurogenesis. Based on the prevalence of neuropsychiatric symptoms/disorders in PACS, there is more possibility for a potential impairment in adult neurogenesis in COVID-19 survivors. This narrative review aims to discuss the various neuroinflammatory processes during PACS and its effect on adult neurogenesis.


Asunto(s)
COVID-19 , Trastornos por Estrés Postraumático , Adulto , Humanos , SARS-CoV-2/metabolismo , Enfermedades Neuroinflamatorias , Síndrome Post Agudo de COVID-19 , Quimiocinas , Citocinas/metabolismo , Neurogénesis/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA