Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Neoplasia ; 23(1): 21-35, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33212364

RESUMEN

Patient-derived xenograft (PDX) tumor models represent a valuable platform for identifying new biomarkers and novel targets, to evaluate therapy response and resistance mechanisms. This study aimed at establishment, characterization and therapy testing of colorectal carcinoma-derived PDX. We generated 49 PDX and validated identity between patient tumor and corresponding PDX. Sensitivity of PDX toward conventional and targeted drugs revealed that 92% of PDX responded toward irinotecan, 45% toward 5-FU, 65% toward bevacizumab, and 61% toward cetuximab. Expression of epidermal growth factor receptor (EGFR) ligands correlated to the sensitivity toward cetuximab. Proto-oncogene B-RAF, EGFR, Kirsten rat sarcoma virus oncogene homolog gene copy number correlated positively with cetuximab and erlotinib sensitivity. The mutational analyses revealed an individual mutational profile of PDX and mainly identical profiles of PDX from primary tumor vs corresponding metastasis. Mutation in PIK3CA was a determinant of accelerated tumor doubling time. PDX with wildtype Kirsten rat sarcoma virus oncogene homolog, proto-oncogene B-RAF, and phosphatidylinositol-4,5-bisphosphate 3-kinaseM catalytic subunit alfa showed higher sensitivity toward cetuximab and erlotinib. To study the molecular mechanism of cetuximab resistance, cetuximab resistant PDX models were generated, and changes in HER2, HER3, betacellulin, transforming growth factor alfa were observed. Global proteome and phosphoproteome profiling showed a reduction in canonical EGFR-mediated signaling via PTPN11 (SHP2) and AKT1S1 (PRAS40) and an increase in anti-apoptotic signaling as a consequence of acquired cetuximab resistance. This demonstrates that PDX models provide a multitude of possibilities to identify and validate biomarkers, signaling pathways and resistance mechanisms for clinically relevant improvement in cancer therapy.


Asunto(s)
Antineoplásicos/farmacología , Biomarcadores de Tumor , Neoplasias Colorrectales/etiología , Neoplasias Colorrectales/patología , Xenoinjertos , Animales , Antineoplásicos/uso terapéutico , Neoplasias Colorrectales/tratamiento farmacológico , Variaciones en el Número de Copia de ADN , Resistencia a Antineoplásicos , Técnica del Anticuerpo Fluorescente , Perfilación de la Expresión Génica , Inestabilidad Genómica , Humanos , Inmunohistoquímica , Ratones , Terapia Molecular Dirigida , Mutación , Medicina de Precisión/métodos , Proteoma , Proteómica , Proto-Oncogenes Mas , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Nat Cell Biol ; 22(4): 498-511, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32203420

RESUMEN

Rho GTPases are central regulators of the cytoskeleton and, in humans, are controlled by 145 multidomain guanine nucleotide exchange factors (RhoGEFs) and GTPase-activating proteins (RhoGAPs). How Rho signalling patterns are established in dynamic cell spaces to control cellular morphogenesis is unclear. Through a family-wide characterization of substrate specificities, interactomes and localization, we reveal at the systems level how RhoGEFs and RhoGAPs contextualize and spatiotemporally control Rho signalling. These proteins are widely autoinhibited to allow local regulation, form complexes to jointly coordinate their networks and provide positional information for signalling. RhoGAPs are more promiscuous than RhoGEFs to confine Rho activity gradients. Our resource enabled us to uncover a multi-RhoGEF complex downstream of G-protein-coupled receptors controlling CDC42-RHOA crosstalk. Moreover, we show that integrin adhesions spatially segregate GEFs and GAPs to shape RAC1 activity zones in response to mechanical cues. This mechanism controls the protrusion and contraction dynamics fundamental to cell motility. Our systems analysis of Rho regulators is key to revealing emergent organization principles of Rho signalling.


Asunto(s)
Citoesqueleto/genética , Proteínas Activadoras de GTPasa/genética , Integrinas/genética , Mecanotransducción Celular/genética , Factores de Intercambio de Guanina Nucleótido Rho/genética , Proteína de Unión al GTP rac1/genética , Animales , Células COS , Adhesión Celular , Línea Celular , Movimiento Celular , Chlorocebus aethiops , Biología Computacional , Citoesqueleto/metabolismo , Citoesqueleto/ultraestructura , Perros , Fibroblastos/metabolismo , Fibroblastos/ultraestructura , Proteínas Activadoras de GTPasa/clasificación , Proteínas Activadoras de GTPasa/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Células HEK293 , Células HeLa , Humanos , Integrinas/metabolismo , Células de Riñón Canino Madin Darby , Ratones , Pan troglodytes , Dominios Proteicos , Ratas , Factores de Intercambio de Guanina Nucleótido Rho/clasificación , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Proteína de Unión al GTP rac1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA