RESUMEN
AIMS: Cigarette smoke often induces pulmonary and systemic inflammation. In animal models, mesenchymal stem cells (MSC) tend to ameliorate these effects. We aimed to explore the local and systemic expression of cytokines in guinea pigs chronically exposed to cigarette smoke, and their modifications by MSC. MAIN METHODS: Concentrations of IL-1ß, IL-6, IL-8, IL-12, TNF-α, INF-É£, TSG-6, MMP-9, TIMP-1, and/or TIMP-2 in serum and bronchoalveolar lavage (BALF) from animals exposed to tobacco smoke (20 cigarettes/day, 5 days/week for 10 weeks) were determined, and mRNA expression of some of them was measured in lung tissue. Intratracheal instillation of allogeneic bone marrow MSC (5x106 cells in 1 ml) was done at week 2. KEY FINDINGS: After cigarette smoke, IL-6 and IFN-γ increased in serum and BALF, while IL-1ß and IL-12 decreased in serum, and TSG-6 and TIMP-2 increased in BALF. IL-1ß had a paradoxical increase in BALF. MSC had an almost null effect in unexposed animals. The intratracheal administration of MSC in guinea pigs exposed to cigarette smoke was associated with a statistically significant decrease of IL-12 and TSG-6 in serum, as well as a decrease of IL-1ß and IFN-γ and an increase in TIMP-1 in BALF. Concerning mRNA expression in lung tissue, cigarette smoke did not modify the relative amount of the studied transcripts, but even so, MSC decreased the IL-12 mRNA and increased the TIMP-1 mRNA. SIGNIFICANCE: A single intratracheal instillation of MSC reduces the pulmonary and systemic proinflammatory pattern induced by chronic exposure to cigarette smoke in guinea pigs. TRIAL REGISTRATION: Not applicable.
Asunto(s)
Fumar Cigarrillos , Células Madre Mesenquimatosas , Cobayas , Animales , Citocinas/metabolismo , Inhibidor Tisular de Metaloproteinasa-1/metabolismo , Inhibidor Tisular de Metaloproteinasa-2 , Interleucina-6/farmacología , Fumar Cigarrillos/efectos adversos , Pulmón/metabolismo , Interleucina-12/farmacología , ARN Mensajero , Células Madre Mesenquimatosas/metabolismo , Líquido del Lavado BronquioalveolarRESUMEN
AIM OF THE STUDY: Long-term exposure to cigarette smoke generates chronic obstructive pulmonary disease (COPD) in guinea pigs, but a comprehensive evaluation of changes in lung function, as assessed by barometric whole body plethysmography (WBP), is lacking. MATERIALS AND METHODS: Female guinea pigs were exposed to the smoke of 20 cigarettes/day, 5 days/week, during 10 weeks (COPD group, n = 8), and were compared with unexposed female guinea pigs of the same age (control group, n = 8). WBP was performed in both groups, followed by lung histology. RESULTS: At the end of the exposure period, guinea pigs in the COPD group had higher respiratory frequency, while duty cycle (Ti/Ttot) was unaffected. There was a trend toward minute ventilation (MV) and expiratory flow at the mid-tidal volume (EF50) to be higher in the COPD group. Enhanced pause (Penh) was lower, while time of braking (TB) and time to PEF relative to Te (Rpef) were higher in the COPD group. All guinea pigs exposed to tobacco smoke developed emphysematous lesions in their lungs and gained less body weight than controls. CONCLUSIONS: In this COPD model, exposure to cigarette smoke produced changes in WBP characterized by a shallow breathing pattern with decreased Penh and a trend toward increasing EF50 (probably due to decreased elastic recoil), increased TB (suggesting dynamic laryngeal narrowing), and a trend of increasing MV (probably due to a higher metabolic rate). Many of these functional changes resemble those observed in patients with COPD and corroborate the suitability of this guinea pig model for the study of COPD.
Asunto(s)
Pletismografía/métodos , Enfermedad Pulmonar Obstructiva Crónica/etiología , Humo/efectos adversos , Animales , Modelos Animales de Enfermedad , Femenino , Cobayas , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Ventilación Pulmonar , Respiración , Pruebas de Función Respiratoria , Volumen de Ventilación Pulmonar , Productos de TabacoRESUMEN
The isolated lung perfusion system has been widely used in pulmonary research, contributing to elucidate the lungs' inner workings, both micro and macroscopically. This technique is useful in the characterization of pulmonary physiology and pathology by measuring metabolic activities and respiratory functions, including interactions between circulatory substances and the effects of inhaled or perfused substances, as in drug testing. While in vitro methods involve the slicing and culturing of tissues, the isolated ex vivo lung perfusion system allows to work with a complete functional organ making possible the study of a continuous physiological function while recreating ventilation and perfusion. However, it should be noted that the effects of the absence of central innervation and lymphatic drainage still have to be fully assessed. This protocol aims to describe the assembly of the isolated lung apparatus, followed by the surgical extraction and cannulation of lungs and heart from experimental lab animals, as well as to display the perfusion technique and signal processing of data. The average viability of the isolated lung ranges between 5-8 h; during this period, the pulmonary capillary permeability increases, causing edema and lung injury. The functionality of preserved pulmonary tissue is measured by the capillary filtration coefficient (Kfc), used to determine the extent of pulmonary edema through time.
Asunto(s)
Edema Pulmonar , Animales , Permeabilidad Capilar , Técnicas In Vitro , Pulmón , Perfusión , ConejosRESUMEN
Circadian rhythms are an adaptive response of organisms to the environment that enables them to measure time. Circadian rhythms are some of the most studied biological rhythms. Serotonin (5HT) has been proposed as their modulator of circadian rhythms, playing a pivotal role in their establishment. However, 5HT concentrations are altered in insect organisms when they feed on some plant extracts. Insects show a variety of rhythms. The larval stage of the lepidopteran Spodoptera frugiperda is a pest of economically important crops. As a response, plants have developed secondary metabolites, such as azadirachtin, obtained from Azadirachta indica. We assessed the circadian rhythm of 5HT in the brain and digestive tube of larvae of S. frugiperda; furthermore, the effect of A. indica extract on the oscillations was evaluated. 5HT modulates the rhythms of locomotor activity, and if extracts of A. indica alter the concentration of 5HT, it can indirectly alter the rhythms of locomotor activity, as well as peristaltic movements of the intestine. Larvae were exposed to a 12 h:12 h light-dark (LD) photoperiod, and half of them remained for 72 h under constant darkness (DD). Tissue samples were obtained at six different times during a single 24 h period, and the amount of 5HT was quantified by high-performance liquid chromatography (HPLC). Data were statistically compared by a one-way ANOVA followed by a Tukey post hoc test and subjected to Cosinor analysis for assessment of 24 h rhythmicity. The results showed that the A. indica methanolic extract had an effect on the 5HT concentration of the brain and digestive tube of the larvae. In the brain, the 5HT increase in larvae fed with the extract could alter memory, learning, sleep, and locomotor activity processes. Whereas in the intestine, the 5HT decrease in the larvae fed with the extract could decrease peristalsis movements and, therefore, indirectly influence the antifeedant effect.