Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Mol Cancer ; 16(1): 84, 2017 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-28446200

RESUMEN

BACKGROUND: Cancer/testis (CT) genes have expression normally restricted to the testis, but become activated during oncogenesis, so they have excellent potential as cancer-specific biomarkers. Evidence is starting to emerge to indicate that they also provide function(s) in the oncogenic programme. Human TEX19 is a recently identified CT gene, but a functional role for TEX19 in cancer has not yet been defined. METHODS: siRNA was used to deplete TEX19 levels in various cancer cell lines. This was extended using shRNA to deplete TEX19 in vivo. Western blotting, fluorescence activated cell sorting and immunofluorescence were used to study the effect of TEX19 depletion in cancer cells and to localize TEX19 in normal testis and cancer cells/tissues. RT-qPCR and RNA sequencing were employed to determine the changes to the transcriptome of cancer cells depleted for TEX19 and Kaplan-Meier plots were generated to explore the relationship between TEX19 expression and prognosis for a range of cancer types. RESULTS: Depletion of TEX19 levels in a range of cancer cell lines in vitro and in vivo restricts cellular proliferation/self-renewal/reduces tumour volume, indicating TEX19 is required for cancer cell proliferative/self-renewal potential. Analysis of cells depleted for TEX19 indicates they enter a quiescent-like state and have subtle defects in S-phase progression. TEX19 is present in both the nucleus and cytoplasm in both cancerous cells and normal testis. In cancer cells, localization switches in a context-dependent fashion. Transcriptome analysis of TEX19 depleted cells reveals altered transcript levels of a number of cancer-/proliferation-associated genes, suggesting that TEX19 could control oncogenic proliferation via a transcript/transcription regulation pathway. Finally, overall survival analysis of high verses low TEX19 expressing tumours indicates that TEX19 expression is linked to prognostic outcomes in different tumour types. CONCLUSIONS: TEX19 is required to drive cell proliferation in a range of cancer cell types, possibly mediated via an oncogenic transcript regulation mechanism. TEX19 expression is linked to a poor prognosis for some cancers and collectively these findings indicate that not only can TEX19 expression serve as a novel cancer biomarker, but may also offer a cancer-specific therapeutic target with broad spectrum potential.


Asunto(s)
Biomarcadores de Tumor/genética , Células Germinativas/metabolismo , Neoplasias/genética , Proteínas Nucleares/genética , Testículo/metabolismo , Animales , Línea Celular Tumoral , Proliferación Celular/genética , Supervivencia sin Enfermedad , Regulación Neoplásica de la Expresión Génica/genética , Células Germinativas/patología , Humanos , Estimación de Kaplan-Meier , Masculino , Ratones , Neoplasias/patología , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Pronóstico , Proteínas de Unión al ARN , Testículo/patología , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Mol Genet Genomic Med ; 9(7): e1707, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34036740

RESUMEN

BACKGROUND: Testis expressed 19 (TEX19) is a specific human stem cell gene identified as cancer-testis antigen (CTA), which emerged as a potential therapeutic drug target. TEX19.1, a mouse paralog of human TEX19, can interact with LINE-1 retrotransposable element ORF1 protein (LIRE1) and subsequently restrict mobilization of LINE-1 elements in the genome. AIM: This study aimed to predict the interaction of TEX19 with LIRE1 and analyze TEX19 missense polymorphisms. TEX19 model was generated using I-TASSER and the interaction between TEX19 and LIRE1 was studied using the HADDOCK software. METHODS: The stability of the docking formed complex was studied through the molecular dynamic simulation using GROMACS. Missense SNPs (n=102) of TEX19 were screened for their potential effects on protein structure and function using different software. RESULTS: Outcomes of this study revealed amino acids that potentially stabilize the predicted interaction interface between TEX19 and LIRE1. Of these SNPs, 37 were predicted to play a probably damaging role for the protein, three of them (F35S, P61R, and E55L) located at the binding site of LIRE1 and could disturb this binding affinity. CONCLUSION: This information can be verified by further in vitro and in vivo experimentations and could be exploited for potential therapeutic targets.


Asunto(s)
Simulación del Acoplamiento Molecular , Mutación Missense , Proteínas de Unión al ARN , Humanos , Sitios de Unión , Polimorfismo de Nucleótido Simple , Unión Proteica , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA