Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Sensors (Basel) ; 23(16)2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37631691

RESUMEN

The small-drone technology domain is the outcome of a breakthrough in technological advancement for drones. The Internet of Things (IoT) is used by drones to provide inter-location services for navigation. But, due to issues related to their architecture and design, drones are not immune to threats related to security and privacy. Establishing a secure and reliable network is essential to obtaining optimal performance from drones. While small drones offer promising avenues for growth in civil and defense industries, they are prone to attacks on safety, security, and privacy. The current architecture of small drones necessitates modifications to their data transformation and privacy mechanisms to align with domain requirements. This research paper investigates the latest trends in safety, security, and privacy related to drones, and the Internet of Drones (IoD), highlighting the importance of secure drone networks that are impervious to interceptions and intrusions. To mitigate cyber-security threats, the proposed framework incorporates intelligent machine learning models into the design and structure of IoT-aided drones, rendering adaptable and secure technology. Furthermore, in this work, a new dataset is constructed, a merged dataset comprising a drone dataset and two benchmark datasets. The proposed strategy outperforms the previous algorithms and achieves 99.89% accuracy on the drone dataset and 91.64% on the merged dataset. Overall, this intelligent framework gives a potential approach to improving the security and resilience of cyber-physical satellite systems, and IoT-aided aerial vehicle systems, addressing the rising security challenges in an interconnected world.

2.
Sensors (Basel) ; 23(5)2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36904963

RESUMEN

The performance of human gait recognition (HGR) is affected by the partial obstruction of the human body caused by the limited field of view in video surveillance. The traditional method required the bounding box to recognize human gait in the video sequences accurately; however, it is a challenging and time-consuming approach. Due to important applications, such as biometrics and video surveillance, HGR has improved performance over the last half-decade. Based on the literature, the challenging covariant factors that degrade gait recognition performance include walking while wearing a coat or carrying a bag. This paper proposed a new two-stream deep learning framework for human gait recognition. The first step proposed a contrast enhancement technique based on the local and global filters information fusion. The high-boost operation is finally applied to highlight the human region in a video frame. Data augmentation is performed in the second step to increase the dimension of the preprocessed dataset (CASIA-B). In the third step, two pre-trained deep learning models-MobilenetV2 and ShuffleNet-are fine-tuned and trained on the augmented dataset using deep transfer learning. Features are extracted from the global average pooling layer instead of the fully connected layer. In the fourth step, extracted features of both streams are fused using a serial-based approach and further refined in the fifth step by using an improved equilibrium state optimization-controlled Newton-Raphson (ESOcNR) selection method. The selected features are finally classified using machine learning algorithms for the final classification accuracy. The experimental process was conducted on 8 angles of the CASIA-B dataset and obtained an accuracy of 97.3, 98.6, 97.7, 96.5, 92.9, 93.7, 94.7, and 91.2%, respectively. Comparisons were conducted with state-of-the-art (SOTA) techniques, and showed improved accuracy and reduced computational time.


Asunto(s)
Aprendizaje Profundo , Humanos , Algoritmos , Marcha , Aprendizaje Automático , Biometría/métodos
3.
Sensors (Basel) ; 23(1)2022 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-36616823

RESUMEN

In the contemporary world, emotion detection of humans is procuring huge scope in extensive dimensions such as bio-metric security, HCI (human-computer interaction), etc. Such emotions could be detected from various means, such as information integration from facial expressions, gestures, speech, etc. Though such physical depictions contribute to emotion detection, EEG (electroencephalogram) signals have gained significant focus in emotion detection due to their sensitivity to alterations in emotional states. Hence, such signals could explore significant emotional state features. However, manual detection from EEG signals is a time-consuming process. With the evolution of artificial intelligence, researchers have attempted to use different data mining algorithms for emotion detection from EEG signals. Nevertheless, they have shown ineffective accuracy. To resolve this, the present study proposes a DNA-RCNN (Deep Normalized Attention-based Residual Convolutional Neural Network) to extract the appropriate features based on the discriminative representation of features. The proposed NN also explores alluring features with the proposed attention modules leading to consistent performance. Finally, classification is performed by the proposed M-RF (modified-random forest) with an empirical loss function. In this process, the learning weights on the data subset alleviate loss amongst the predicted value and ground truth, which assists in precise classification. Performance and comparative analysis are considered to explore the better performance of the proposed system in detecting emotions from EEG signals that confirms its effectiveness.


Asunto(s)
Inteligencia Artificial , Bosques Aleatorios , Humanos , Emociones , Redes Neurales de la Computación , Algoritmos , Electroencefalografía/métodos
4.
PeerJ Comput Sci ; 10: e1996, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38660170

RESUMEN

Cancer, a life-threatening disorder caused by genetic abnormalities and metabolic irregularities, is a substantial health danger, with lung and colon cancer being major contributors to death. Histopathological identification is critical in directing effective treatment regimens for these cancers. The earlier these disorders are identified, the lesser the risk of death. The use of machine learning and deep learning approaches has the potential to speed up cancer diagnosis processes by allowing researchers to analyse large patient databases quickly and affordably. This study introduces the Inception-ResNetV2 model with strategically incorporated local binary patterns (LBP) features to improve diagnostic accuracy for lung and colon cancer identification. The model is trained on histopathological images, and the integration of deep learning and texture-based features has demonstrated its exceptional performance with 99.98% accuracy. Importantly, the study employs explainable artificial intelligence (AI) through SHapley Additive exPlanations (SHAP) to unravel the complex inner workings of deep learning models, providing transparency in decision-making processes. This study highlights the potential to revolutionize cancer diagnosis in an era of more accurate and reliable medical assessments.

5.
PeerJ Comput Sci ; 10: e1899, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38435593

RESUMEN

Thermal comfort is a crucial element of smart buildings that assists in improving, analyzing, and realizing intelligent structures. Energy consumption forecasts for such smart buildings are crucial owing to the intricate decision-making processes surrounding resource efficiency. Machine learning (ML) techniques are employed to estimate energy consumption. ML algorithms, however, require a large amount of data to be adequate. There may be privacy violations due to collecting this data. To tackle this problem, this study proposes a federated deep learning (FDL) architecture developed around a deep neural network (DNN) paradigm. The study employs the ASHRAE RP-884 standard dataset for experimentation and analysis, which is available to the general public. The data is normalized using the min-max normalization approach, and the Synthetic Minority Over-sampling Technique (SMOTE) is used to enhance the minority class's interpretation. The DNN model is trained separately on the dataset after obtaining modifications from two clients. Each client assesses the data greatly to reduce the over-fitting impact. The test result demonstrates the efficiency of the proposed FDL by reaching 82.40% accuracy while securing the data.

6.
PLoS One ; 19(4): e0300013, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38598444

RESUMEN

Hyperspectral Images (HSI) classification is a challenging task due to a large number of spatial-spectral bands of images with high inter-similarity, extra variability classes, and complex region relationships, including overlapping and nested regions. Classification becomes a complex problem in remote sensing images like HSIs. Convolutional Neural Networks (CNNs) have gained popularity in addressing this challenge by focusing on HSI data classification. However, the performance of 2D-CNN methods heavily relies on spatial information, while 3D-CNN methods offer an alternative approach by considering both spectral and spatial information. Nonetheless, the computational complexity of 3D-CNN methods increases significantly due to the large capacity size and spectral dimensions. These methods also face difficulties in manipulating information from local intrinsic detailed patterns of feature maps and low-rank frequency feature tuning. To overcome these challenges and improve HSI classification performance, we propose an innovative approach called the Attention 3D Central Difference Convolutional Dense Network (3D-CDC Attention DenseNet). Our 3D-CDC method leverages the manipulation of local intrinsic detailed patterns in the spatial-spectral features maps, utilizing pixel-wise concatenation and spatial attention mechanism within a dense strategy to incorporate low-rank frequency features and guide the feature tuning. Experimental results on benchmark datasets such as Pavia University, Houston 2018, and Indian Pines demonstrate the superiority of our method compared to other HSI classification methods, including state-of-the-art techniques. The proposed method achieved 97.93% overall accuracy on the Houston-2018, 99.89% on Pavia University, and 99.38% on the Indian Pines dataset with the 25 × 25 window size.


Asunto(s)
Benchmarking , Redes Neurales de la Computación , Telemetría , Universidades
7.
PeerJ Comput Sci ; 10: e1982, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38660162

RESUMEN

Maternal healthcare is a critical aspect of public health that focuses on the well-being of pregnant women before, during, and after childbirth. It encompasses a range of services aimed at ensuring the optimal health of both the mother and the developing fetus. During pregnancy and in the postpartum period, the mother's health is susceptible to several complications and risks, and timely detection of such risks can play a vital role in women's safety. This study proposes an approach to predict risks associated with maternal health. The first step of the approach involves utilizing principal component analysis (PCA) to extract significant features from the dataset. Following that, this study employs a stacked ensemble voting classifier which combines one machine learning and one deep learning model to achieve high performance. The performance of the proposed approach is compared to six machine learning algorithms and one deep learning algorithm. Two scenarios are considered for the experiments: one utilizing all features and the other using PCA features. By utilizing PCA-based features, the proposed model achieves an accuracy of 98.25%, precision of 99.17%, recall of 99.16%, and an F1 score of 99.16%. The effectiveness of the proposed model is further confirmed by comparing it to existing state of-the-art approaches.

8.
Sci Rep ; 14(1): 12532, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38822007

RESUMEN

This paper aims to estimate the permeability of concrete by replacing the laboratory tests with robust machine learning (ML)-based models. For this purpose, the potential of twelve well-known ML techniques was investigated in estimating the water penetration depth (WPD) of nano natural pozzolana (NNP)-reinforced concrete based on 840 data points. The preparation of concrete specimens was based on the different combinations of NNP content, water-to-cement (W/C) ratio, median particle size (MPS) of NNP, and curing time (CT). Comparing the results estimated by the ML models with the laboratory results revealed that the hist-gradient boosting regressor (HGBR) and K-nearest neighbors (KNN) algorithms were the most and least robust models to estimate the WPD of NNP-reinforced concrete, respectively. Both laboratory and ML results showed that the WPD of NNP-reinforced concrete decreased with the increase of the NNP content from 1 to 4%, the decrease of the W/C ratio and the MPS, and the increase of the CT. To further aid in the estimation of concrete's WPD for engineering challenges, a graphical user interface for the ML-based models was developed. Proposing such a model may be effectively employed in the management of concrete quality.

9.
Cancer Biomark ; 40(2): 155-170, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38160347

RESUMEN

Breast cancer is a major cause of female deaths, especially in underdeveloped countries. It can be treated if diagnosed early and chances of survival are high if treated appropriately and timely. For timely and accurate automated diagnosis, machine learning approaches tend to show better results than traditional methods, however, accuracy lacks the desired level. This study proposes the use of an ensemble model to provide accurate detection of breast cancer. The proposed model uses the random forest and support vector classifier along with automatic feature extraction using an optimized convolutional neural network (CNN). Extensive experiments are performed using the original, as well as, CNN-based features to analyze the performance of the deployed models. Experimental results involving the use of the Wisconsin dataset reveal that CNN-based features provide better results than the original features. It is observed that the proposed model achieves an accuracy of 99.99% for breast cancer detection. Performance comparison with existing state-of-the-art models is also carried out showing the superior performance of the proposed model.


Asunto(s)
Neoplasias de la Mama , Redes Neurales de la Computación , Humanos , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/patología , Femenino , Máquina de Vectores de Soporte , Algoritmos , Aprendizaje Automático
10.
PeerJ Comput Sci ; 10: e1722, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38196956

RESUMEN

Mobile app stores, such as Google Play, have become famous platforms for practically all types of software and services for mobile phone users. Users may browse and download apps via app stores, which also help developers monitor their apps by allowing users to rate and review them. App reviews may contain the user's experience, bug details, requests for additional features, or a textual rating of the app. These ratings can be frequently biased due to inadequate votes. However, there are significant discrepancies between the numerical ratings and the user reviews. This study uses a transfer learning approach to predict the numerical ratings of Google apps. It benefits from user-provided numeric ratings of apps as the training data and provides authentic ratings of mobile apps by analyzing users' reviews. A transfer learning-based model ELMo is proposed for this purpose which is based on the word vector feature representation technique. The performance of the proposed model is compared with three other transfer learning and five machine learning models. The dataset is scrapped from the Google Play store which extracts the data from 14 different categories of apps. First, biased and unbiased user rating is segregated using TextBlob analysis to formulate the ground truth, and then classifiers prediction accuracy is evaluated. Results demonstrate that the ELMo classifier has a high potential to predict authentic numeric ratings with user actual reviews.

11.
Sci Rep ; 14(1): 3570, 2024 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-38347011

RESUMEN

White blood cells (WBCs) play a vital role in immune responses against infections and foreign agents. Different WBC types exist, and anomalies within them can indicate diseases like leukemia. Previous research suffers from limited accuracy and inflated performance due to the usage of less important features. Moreover, these studies often focus on fewer WBC types, exaggerating accuracy. This study addresses the crucial task of classifying WBC types using microscopic images. This study introduces a novel approach using extensive pre-processing with data augmentation techniques to produce a more significant feature set to achieve more promising results. The study conducts experiments employing both conventional deep learning and transfer learning models, comparing performance with state-of-the-art machine and deep learning models. Results reveal that a pre-processed feature set and convolutional neural network classifier achieves a significantly better accuracy of 0.99. The proposed method demonstrates superior accuracy and computational efficiency compared to existing state-of-the-art works.


Asunto(s)
Leucemia , Leucocitos , Humanos , Redes Neurales de la Computación , Algoritmos
12.
SLAS Technol ; : 100161, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38901762

RESUMEN

Most classification models for Alzheimer's Diagnosis (AD) do not have specific strategies for individual input samples, leading to the problem of easily overlooking personalized differences between samples. This research introduces a customized dynamically ensemble convolution neural network (PDECNN), which is able to build a specific integration strategy based on the distinctiveness of the sample. In this paper, we propose a personalized dynamic ensemble alzheimer's Diagnosis classification model. This model will dynamically modify the deteriorated brain areas of interest depending on various samples since it can adjust to variations in the degeneration of sample brain areas. In clinical problems, the PDECNN model has additional diagnostic importance since it can identify sample-specific degraded brain areas based on input samples. This model considers the variability of brain region degeneration levels between input samples, evaluates the degree of degeneration of specific brain regions using an attention mechanism, and selects and integrates brain region features based on the degree of degeneration. Furthermore, by redesigning the classification accuracy performance, we respectively improve it by 4 %, 11 %, and 8 %. Moreover, the degraded brain regions identified by the model show high consistency with the clinical manifestations of AD.

13.
Sci Rep ; 14(1): 15625, 2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-38972881

RESUMEN

Blood cancer has emerged as a growing concern over the past decade, necessitating early diagnosis for timely and effective treatment. The present diagnostic method, which involves a battery of tests and medical experts, is costly and time-consuming. For this reason, it is crucial to establish an automated diagnostic system for accurate predictions. A particular field of focus in medical research is the use of machine learning and leukemia microarray gene data for blood cancer diagnosis. Even with a great deal of research, more improvements are needed to reach the appropriate levels of accuracy and efficacy. This work presents a supervised machine-learning algorithm for blood cancer prediction. This work makes use of the 22,283-gene leukemia microarray gene data. Chi-squared (Chi2) feature selection methods and the synthetic minority oversampling technique (SMOTE)-Tomek resampling is used to overcome issues with imbalanced and high-dimensional datasets. To balance the dataset for each target class, SMOTE-Tomek creates synthetic data, and Chi2 chooses the most important features to train the learning models from 22,283 genes. A novel weighted convolutional neural network (CNN) model is proposed for classification, utilizing the support of three separate CNN models. To determine the importance of the proposed approach, extensive experiments are carried out on the datasets, including a performance comparison with the most advanced techniques. Weighted CNN demonstrates superior performance over other models when coupled with SMOTE-Tomek and Chi2 techniques, achieving a remarkable 99.9% accuracy. Results from k-fold cross-validation further affirm the supremacy of the proposed model.


Asunto(s)
Leucemia , Redes Neurales de la Computación , Humanos , Leucemia/genética , Algoritmos , Neoplasias Hematológicas/genética , Aprendizaje Automático Supervisado , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Aprendizaje Automático , Perfilación de la Expresión Génica/métodos
14.
PeerJ Comput Sci ; 9: e1631, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38077602

RESUMEN

Background: Tooth decay, also known as dental caries, is a common oral health problem that requires early diagnosis and treatment to prevent further complications. It is a chronic disease that causes the gradual breakdown of the tooth's hard tissues, primarily due to the interaction of bacteria and dietary sugars. Results: While numerous investigations have focused on addressing this issue using image-based datasets, the outcomes have revealed limitations in their effectiveness. In a novel approach, this study focuses on feature-based datasets, coupled with the strategic integration of Principle Component Analysis (PCA) and Chi-square (chi2) for robust feature engineering. In the proposed model, features are generated using PCA, utilizing a voting classifier ensemble consisting of Extreme Gradient Boosting (XGB), Random Forest (RF), and Extra Trees Classifier (ETC) algorithms. Discussion: Extensive experiments were conducted to compare the proposed approach with the chi2 features and machine learning models to evaluate its efficacy for tooth caries detection. The results showed that the proposed voting classifier using PCA features outperformed the other approaches, achieving an accuracy, precision, recall, and F1 score of 97.36%, 96.14%, 96.84%, and 96.65%, respectively. Conclusion: The study demonstrates that the utilization of feature-based datasets and PCA-based feature engineering, along with a voting classifier ensemble, significantly improves tooth caries detection accuracy compared to image-based approaches. The achieved high accuracy, precision, recall, and F1 score emphasize the potential of the proposed model for effective dental caries detection. This study provides new insights into the potential of innovative methodologies to improve dental healthcare by evaluating their effectiveness in addressing prevalent oral health issues.

15.
Neural Netw ; 162: 240-257, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36913821

RESUMEN

Breast cancer is common among women resulting in mortality when left untreated. Early detection is vital so that suitable treatment could assist cancer from spreading further and save people's life. The traditional way of detection is a time-consuming process. With the evolvement of DM (Data Mining), the healthcare industry could be benefitted in predicting the disease as it permits the physicians to determine the significant attributes for diagnosis. Though, conventional techniques have used DM-based methods to identify breast cancer, they lacked in terms of prediction rate. Moreover, parametric-Softmax classifiers have been a general option by conventional works with fixed classes, particularly when huge labelled data are present during training. Nevertheless, this turns into an issue for open set cases where new classes are encountered along with few instances to learn a generalized parametric classifier. Thus, the present study aims to implement a non-parametric strategy by optimizing the embedding of a feature rather than parametric classifiers. This research utilizes Deep CNN (Deep Convolutional Neural Network) and Inception V3 for learning visual features which preserve neighbourhood outline in semantic space relying on NCA (Neighbourhood Component Analysis) criteria. Delimited by its bottleneck, the study proposes MS-NCA (Modified Scalable-Neighbourhood Component Analysis) that relies on a non-linear objective function to perform feature fusion by optimizing the distance-learning objective due to which it gains the capability of computing inner feature products without performing mapping which increases the scalability of MS-NCA. Finally, G-HPO (Genetic-Hyper-parameter Optimization) is proposed. In this case, the new stage in the algorithm simply denotes the enhancement in the length of chromosome bringing several hyperparameters into subsequent XGBoost, NB and RF models having numerous layers for identifying the normal and affected cases of breast cancer for which optimized hyper-parameter values of RF (Random Forest), NB (Naïve Bayes), and XGBoost (eXtreme Gradient Boosting) are determined. This process helps in improvising the classification rate which is confirmed through analytical results.


Asunto(s)
Neoplasias de la Mama , Femenino , Humanos , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/genética , Teorema de Bayes , Redes Neurales de la Computación , Algoritmos , Bosques Aleatorios
16.
Diagnostics (Basel) ; 13(8)2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37189574

RESUMEN

Malignant melanoma is the most invasive skin cancer and is currently regarded as one of the deadliest disorders; however, it can be cured more successfully if detected and treated early. Recently, CAD (computer-aided diagnosis) systems have emerged as a powerful alternative tool for the automatic detection and categorization of skin lesions, such as malignant melanoma or benign nevus, in given dermoscopy images. In this paper, we propose an integrated CAD framework for rapid and accurate melanoma detection in dermoscopy images. Initially, an input dermoscopy image is pre-processed by using a median filter and bottom-hat filtering for noise reduction, artifact removal, and, thus, enhancing the image quality. After this, each skin lesion is described by an effective skin lesion descriptor with high discrimination and descriptiveness capabilities, which is constructed by calculating the HOG (Histogram of Oriented Gradient) and LBP (Local Binary Patterns) and their extensions. After feature selection, the lesion descriptors are fed into three supervised machine learning classification models, namely SVM (Support Vector Machine), kNN (k-Nearest Neighbors), and GAB (Gentle AdaBoost), to diagnostically classify melanocytic skin lesions into one of two diagnostic categories, melanoma or nevus. Experimental results achieved using 10-fold cross-validation on the publicly available MED-NODEE dermoscopy image dataset demonstrate that the proposed CAD framework performs either competitively or superiorly to several state-of-the-art methods with stronger training settings in relation to various diagnostic metrics, such as accuracy (94%), specificity (92%), and sensitivity (100%).

17.
Biomolecules ; 14(1)2023 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-38254648

RESUMEN

ASD (autism spectrum disorder) is a complex developmental and neurological disorder that impacts the social life of the affected person by disturbing their capability for interaction and communication. As it is a behavioural disorder, early treatment will improve the quality of life of ASD patients. Traditional screening is carried out with behavioural assessment through trained physicians, which is expensive and time-consuming. To resolve the issue, several conventional methods strive to achieve an effective ASD identification system, but are limited by handling large data sets, accuracy, and speed. Therefore, the proposed identification system employed the MBA (modified bat) algorithm based on ANN (artificial neural networks), modified ANN (modified artificial neural networks), DT (decision tree), and KNN (k-nearest neighbours) for the classification of ASD in children and adolescents. A BA (bat algorithm) is utilised for the automatic zooming capability, which improves the system's efficacy by excellently finding the solutions in the identification system. Conversely, BA is effective in the identification, it still has certain drawbacks like speed, accuracy, and falls into local extremum. Therefore, the proposed identification system modifies the BA optimisation with random perturbation of trends and optimal orientation. The dataset utilised in the respective model is the Q-chat-10 dataset. This dataset contains data of four stages of age groups such as toddlers, children, adolescents, and adults. To analyse the quality of the dataset, dataset evaluation mechanism, such as the Chi-Squared Statistic and p-value, are used in the respective research. The evaluation signifies the relation of the dataset with respect to the proposed model. Further, the performance of the proposed detection system is examined with certain performance metrics to calculate its efficiency. The outcome revealed that the modified ANN classifier model attained an accuracy of 1.00, ensuring improved performance when compared with other state-of-the-art methods. Thus, the proposed model was intended to assist physicians and researchers in enhancing the diagnosis of ASD to improve the standard of life of ASD patients.


Asunto(s)
Trastorno del Espectro Autista , Adolescente , Adulto , Humanos , Trastorno del Espectro Autista/diagnóstico , Heurística , Calidad de Vida , Algoritmos , Benchmarking
18.
Comput Intell Neurosci ; 2023: 5684914, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37455767

RESUMEN

Dementia is increasing day-by-day in older adults. Many of them are spending their life joyfully due to smart home technologies. Smart homes contain several smart devices which can support living at home. Automated assessment of smart home residents is a significant aspect of smart home technology. Detecting dementia in older adults in the early stage is the basic need of this time. Existing technologies can detect dementia timely but lacks performance. In this paper, we proposed an automated cognitive health assessment approach using machines and deep learning based on daily life activities. To validate our approach, we use CASAS publicly available daily life activities dataset for experiments where residents perform their routine activities in a smart home. We use four machine learning algorithms: decision tree (DT), Naive Bayes (NB), support vector machine (SVM), and multilayer perceptron (MLP). Furthermore, we use deep neural network (DNN) for healthy and dementia classification. Experiments reveal the 96% accuracy using the MLP classifier. This study suggests using machine learning classifiers for better dementia detection, specifically for the dataset which contains real-world data.


Asunto(s)
Algoritmos , Demencia , Humanos , Anciano , Teorema de Bayes , Aprendizaje Automático , Demencia/diagnóstico , Cognición
19.
J Dent ; 137: 104651, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37553029

RESUMEN

OBJECTIVES: This research focuses on performing teeth segmentation with panoramic radiograph images using a denoised encoder-based residual U-Net model, which enhances segmentation techniques and has the capacity to adapt to predictions with different and new data in the dataset, making the proposed model more robust and assisting in the accurate identification of damages in individual teeth. METHODS: The effective segmentation starts with pre-processing the Tufts dataset to resize images to avoid computational complexities. Subsequently, the prediction of the defect in teeth is performed with the denoised encoder block in the residual U-Net model, in which a modified identity block is provided in the encoder section for finer segmentation on specific regions in images, and features are identified optimally. The denoised block aids in handling noisy ground truth images effectively. RESULTS: Proposed module achieved greater values of mean dice and mean IoU with 98.90075 and 98.74147 CONCLUSIONS: Proposed AI enabled model permitted a precise approach to segment the teeth on Tuffs dental dataset in spite of the existence of densed dental filling and the kind of tooth. CLINICAL SIGNIFICANCE: The proposed model is pivotal for improved dental diagnostics, offering precise identification of dental anomalies. This could revolutionize clinical dental settings by facilitating more accurate treatments and safer examination processes with lower radiation exposure, thus enhancing overall patient care.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Humanos , Radiografía Panorámica
20.
Comput Math Methods Med ; 2023: 9676206, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37455684

RESUMEN

Image processing has enabled faster and more accurate image classification. It has been of great benefit to the health industry. Manually examining medical images like MRI and X-rays can be very time-consuming, more prone to human error, and way more costly. One such examination is the Pap smear exam, where the cervical cells are examined in laboratory settings to distinguish healthy cervical cells from abnormal cells, thus indicating early signs of cervical cancer. In this paper, we propose a convolutional neural network- (CNN-) based cervical cell classification using the publicly available SIPaKMeD dataset having five cell categories: superficial-intermediate, parabasal, koilocytotic, metaplastic, and dyskeratotic. CNN distinguishes between healthy cervical cells, cells with precancerous abnormalities, and benign cells. Pap smear images were segmented, and a deep CNN using four convolutional layers was applied to the augmented images of cervical cells obtained from Pap smear slides. A simple yet efficient CNN is proposed that yields an accuracy of 0.9113% and can be successfully used to classify cervical cells. A simple architecture that yields a reasonably good accuracy can increase the speed of diagnosis and decrease the response time, reducing the computation cost. Future researchers can build upon this model to improve the model's accuracy to get a faster and more accurate prediction.


Asunto(s)
Prueba de Papanicolaou , Neoplasias del Cuello Uterino , Femenino , Humanos , Prueba de Papanicolaou/métodos , Neoplasias del Cuello Uterino/diagnóstico por imagen , Privacidad , Cuello del Útero/diagnóstico por imagen , Redes Neurales de la Computación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA