Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
J Environ Manage ; 328: 116963, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36516710

RESUMEN

Since the green revolution, excessive utilization of chemical fertilizers has become prevalent due to concerns about the integrity of food production for the growing population. This indiscriminate use harms the fertility of the soil, especially in sandy soils where nutrient leaching, particularly nitrogen, results in yield losses as well as environmental and health problems. A pot experiment was carried out at Gomal University, Pakistan, in March 2022 to assess the nitrogen use efficiency, nitrogen uptake, and yield of okra. There were nine treatments with four replicates and the treatment combinations were established using a completely randomized design (CRD). Urea coated with agrotain (urease inhibitor) was applied each at 120 and 84 kg N ha-1 in 2 or 3 splits. Urea at 84 kg N ha-1 was also used in combination with Farmyard manure (FYM) and compared against the control (100% recommended urea). Obtained results showed that inhibitor-treated urea significantly increased soil concentrations of NO3-N and NH4-N over non-inhibitor-treated urea. The highest NO3-N was recorded where urea alone and urea treated with 3 L (3 L) agrotain was applied to 100%. The highest ammonical-N was recorded, where 70% urea treated with 3 L agrotain was applied. Urea, in combination with FYM, significantly increased the organic matter. Electrical conductivity in extract (ECe), and pH of the soil. The improvement in yield with inhibitor was at par with 70% and 100% urea. The highest improvement of 16% in fruit yield and 7.29% nitrogen use efficiency was obtained in the treatment receiving 120 kg N ha-1 treated with 3 L agrotain compared with non-inhibitor urea. The 2nd highest improvement of 10% in fruit yield on account of increased fruit length, stem diameter, and number of fruits, and 5.97% nitrogen use efficiency (NUE) was obtained in treatment receiving 120 kg N ha-1 in combination with FYM in comparison to control. These results suggested that the use of N inhibitor significantly increased the okra fruit yield on account of enhancing ammonical-N and increased N use efficiency.


Asunto(s)
Abelmoschus , Suelo , Humanos , Agricultura/métodos , Estiércol , Nitrógeno/análisis , Urea , Productos Agrícolas , Fertilizantes
2.
Molecules ; 27(19)2022 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-36234810

RESUMEN

Inflammation is the main cause of several autoimmune diseases, including type I diabetes, rheumatoid arthritis, bullous pemphigoid, paraneoplastic pemphigoid, and multiple sclerosis. Currently, there is an urgent demand for the discovery of novel anti-inflammatory drugs with potent activity but also safe for long-term application. Toward this aim, the present study reported the design, synthesis, and characterization of a set of novel 1,3-disubstituted-2-thiohydantoins derivatives. The anti-inflammatory activity of synthesized compounds was assessed against murine leukemia cell line (RAW264.7) by evaluating the cytotoxicity activity and their potency to prevent nitric oxide (NO) production. The results revealed that the synthesized compounds possess a considerable cytotoxic activity together with the ability to reduce the NO production in murine leukemia cell line (RAW264.7). Among synthesized compounds, compound 7 exhibited the most potent cytotoxic activity with IC50 of 197.68 µg/mL, compared to celecoxib drug (IC50 value 251.2 µg/mL), and demonstrated a significant ability to diminish the NO production (six-fold reduction). Exploring the mode of action responsible for the anti-inflammatory activity revealed that compound 7 displays a significant and dose-dependent inhibitory effect on the expression of pro-inflammatory cytokines IL-1ß. Furthermore, compound 7 demonstrated the ability to significantly reduce the expression of the inflammatory cytokines IL-6 and TNF-α at 50 µg/mL, as compared to Celecoxib. Finally, detailed molecular modelling studies indicated that compound 7 exhibits a substantial binding affinity toward the binding pocket of the cyclooxygenase 2 enzyme. Taken together, our study reveals that 1,3-disubstituted-2-thiohydantoin could be considered as a promising scaffold for the development of potent anti-inflammatory agents.


Asunto(s)
Leucemia , Tiohidantoínas , Animales , Antiinflamatorios/química , Celecoxib , Ciclooxigenasa 2/metabolismo , Humanos , Interleucina-6 , Ratones , Simulación del Acoplamiento Molecular , Estructura Molecular , Óxido Nítrico/metabolismo , Relación Estructura-Actividad , Factor de Necrosis Tumoral alfa/metabolismo
3.
J Mol Liq ; 363: 119878, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-35880006

RESUMEN

Hydrocortisone (termed as D1) and dexamethasone (termed as D2) are corticosteroids currently used to treat COVID-19. COVID-19 is a disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Exploring additional chemical properties of drugs used in the treatment protocols for COVID-19 could help scientists alike improve these treatment protocols and potentially even the vaccines (i.e., Janssen, Moderna, AstraZeneca, Pfizer-BioNTech). In this work, the charge-transfer (CT) properties of these two corticosteroids (D1 and D2) with two universal acceptors: 7,8,8-tetracyanoquinodimethane (termed as TCNQ) and fluoranil (termed as TFQ) in five different solvents were investigated. The examined solvents were MeOH, EtOH, MeCN, CH2Cl2, and CHCl3. The CT interactions formed stable corticosteroid CT complexes in all examined solvents. Several spectroscopic parameters were derived, and the oscillator strength (f) and transition dipole moment (µe.g. ) values revealed that the interaction between the investigated corticosteroids with TCNQ acceptor is much stronger than their interaction with TFQ acceptor. The CT interactions were proposed to process via n â†’ π* transition.

4.
Int J Biol Macromol ; 268(Pt 2): 131947, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38685542

RESUMEN

Trimethoprim (TMP), an antibiotic contaminant, can be effectively removed from water by using the innovative magnetic metal-organic framework (MOF) composite sponge Fe3O4@Rh-MOF@PIC, which is shown in this study. The composite is made up of magnetite (Fe3O4) nanoparticles and a rhodium MOF embedded in a poly(itaconic acid) grafted chitosan matrix. The structure and characteristics of the synthesized material were confirmed by thorough characterization employing SEM, FTIR, XPS, XRD, and BET techniques. Notably, the composite shows a high magnetic saturation of 64 emu g-1, which makes magnetic separation easier, according to vibrating sample magnetometry. Moreover, BET analysis revealed that the Fe3O4@Rh-MOF@PIC sponge had an incredibly high surface area of 1236.48 m2/g. Its outstanding efficacy was confirmed by batch adsorption tests, which produced a maximum adsorption capacity of 391.9 mg/g for the elimination of TMP. Due to its high porosity, magnetic characteristics, and superior trimethoprim uptake, this magnetic MOF composite sponge is a promising adsorbent for effective removal of antibiotics from contaminated water sources. An adsorption energy of 24.5 kJ/mol was found by batch investigations on the Fe3O4@Rh-MOF@PIC composite sponge for trimethoprim (TMP) adsorption. The fact that this value was up 8 kJ/mol suggests that the main mechanism controlling TMP absorption onto the sponge adsorbent is chemisorption. Chemisorption requires creating strong chemical interactions between adsorbate and adsorbent surface groups, unlike weaker physisorption. The magnetic composite sponge exhibited strong removal capabilities and high adsorption capacities for the antibiotic pollutant. The Fe3O4@Rh-MOF@PIC composite sponge also showed magnetism, which allowed for easy magnetic separation after adsorption. Over the course of 6 cycles, it showed outstanding reusability, and XRD confirmed that its composition was stable. The high surface area MOF's pore filling, hydrogen bonding, π-π stacking, and electrostatic interactions were the main trimethoprim adsorption mechanisms. This magnetic composite is feasible and effective for removing antibiotics from water because of its separability, reusability, and synergistic adsorption mechanisms via electrostatics, H-bonding, and π-interactions. The adsorption results were optimized using Box Behnken-design (BBD).


Asunto(s)
Quitosano , Estructuras Metalorgánicas , Trimetoprim , Aguas Residuales , Contaminantes Químicos del Agua , Purificación del Agua , Quitosano/química , Estructuras Metalorgánicas/química , Trimetoprim/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/aislamiento & purificación , Adsorción , Purificación del Agua/métodos , Aguas Residuales/química , Termodinámica , Cinética , Succinatos
5.
Curr Probl Cardiol ; 49(1 Pt B): 102112, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37774899

RESUMEN

Cardiovascular disease is the leading cause of death, medical complications, and healthcare costs. Although recent advances have been in treating cardiovascular disorders linked with a reduced ejection fraction, acutely decompensate cardiac failure remains a significant medical problem. The transient receptor potential cation channel (TRPC6) family responds to neurohormonal and mechanical stress, playing critical roles in cardiovascular diseases. Therefore, TRP C6 channels have great promise as therapeutic targets. Numerous studies have investigated the roles of TRP C6 channels in pain neurons, highlighting their significance in cardiovascular research. The TRPC6 protein exhibits a broad distribution in various organs and tissues, including the brain, nerves, heart, blood vessels, lungs, kidneys, gastrointestinal tract, and other bodily structures. Its activation can be triggered by alterations in osmotic pressure, mechanical stimulation, and diacylglycerol. Consequently, TRPC6 plays a significant role in the pathophysiological mechanisms underlying diverse diseases within living organisms. A recent study has indicated a strong correlation between the disorder known as TRPC6 and the development of cardiovascular diseases. Consequently, investigations into the association between TRPC6 and cardiovascular diseases have gained significant attention in the scientific community. This review explores the most recent developments in the recognition and characterization of TRPC6. Additionally, it considers the field's prospects while examining how TRPC6 might be altered and its clinical applications.


Asunto(s)
Enfermedades Cardiovasculares , Canal Catiónico TRPC6 , Humanos , Pulmón/metabolismo , Canales Catiónicos TRPC/metabolismo , Canal Catiónico TRPC6/metabolismo
6.
ACS Omega ; 9(33): 35408-35419, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39184463

RESUMEN

Mn3O4 nanoparticles (NPs) find diverse applications in the fields of medicine, biomedicine, biosensors, water treatment and purification, electronics, electrochemistry, and photoelectronics. The production of Mn3O4 NPs was reported earlier through various physical, chemical, and green routes, but no studies have still been performed on their biosynthesis from Tagetes erecta. We synthesized manganese oxide NPs, i.e., (Mn3O4)L and (Mn3O4)P NPs, by utilizing leaves and petals, respectively, of T. erecta as reducing and stabilizing agents. The investigated green path is eco-friendly and does not involve any hazardous raw materials. The structural properties of NPs were determined by X-ray diffraction (XRD) analysis, spectroscopies (Fourier transform infrared (FTIR), Raman, and UV-visible), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). The NPs were also evaluated for their electrochemical properties by cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD). XRD analysis was performed to verify their tetragonal geometry, and the crystallite size (19.24 nm) of (Mn3O4)P was smaller than that (20.84 nm) of (Mn3O4)L NPs. SEM images displayed a porous and spherical morphology with a diameter of 14-35 nm. FTIR spectra of (Mn3O4)L and (Mn3O4)P displayed Mn-O vibrations at 605.69 and 616.87 cm-1, respectively, and the hydrous nature of the material. Raman spectroscopy revealed the existence of tetrahedral and octahedral units along with A1g, T2g, and Eg active modes of Mn3O4 and 2TO mode. UV-visible analyses of (Mn3O4)L and (Mn3O4)P NPs showed absorption peaks at 272.3 and 268.8 nm, along with band gaps of 4.83 and 5.49 eV, respectively. TGA curves displayed good thermal stabilities up to 600 °C and a loss of moisture content. DSC curves exhibited exothermic/endothermic peaks with glass transition temperatures of 258.9 and 308.7 °C for (Mn3O4)P and (Mn3O4)L, respectively. The CV curves showed redox peaks and confirmed that the electrochemical reaction takes place in the Mn3O4 material. GCD scans revealed the capacitive behavior of NPs and their suitability as electrodes in energy storage devices. However, (Mn3O4)L will act as a good material for energy storage applications as compared to (Mn3O4)P NPs. The synthesized NPs were also tested for their antibacterial efficacy by biofilm inhibition and agar well diffusion methods. The NPs showed higher activities against Staphylococcus aureus (Gram-positive) than against Escherichia coli (Gram-negative), and (Mn3O4)P was more bioactive than (Mn3O4)L.

7.
RSC Adv ; 14(40): 29526-29534, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39297028

RESUMEN

A theoretical study of monolayer boron phosphorous nitride (B2PN) is performed to explore its electronic and thermoelectric properties. The thermodynamic stability is determined by the formation energy of a monolayer. The dynamic stability is obtained from the phonon dispersion curve. We performed an AMID simulation to ensure the thermal stability and found that our material is thermally stable at 700 K. The system possesses direct band gaps of 0.25 eV and 0.4 eV with Perdew-Burke-Ernzerhof (PBE) and hybrid functional (HSE), respectively. The Seebeck coefficient is found to be the same in both directions, and the maximum value is 1.55 mV K-1. The relaxation time is found to be longer for the hole-doped system than the electron-doped system. It is observed that electrical conductivity is greater for hole-doped system in both directions, and a similar trend is observed for electronic thermal conductivity. We found that the lattice thermal conductivity of our systems is anisotropic. The lattice thermal conductivity along the Y-direction is greater than that in the X-direction. The calculation performed for the figure of merit (ZT) reveals that the system has a high ZT of 1.14 for a hole-doped system. The figure of merit makes the system a promising candidate for potential thermoelectric device applications.

8.
ACS Omega ; 8(22): 19892-19899, 2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37305269

RESUMEN

In this work, the new compositions of FeCoNiAlMn1-xCrx, (0.0 ≤ x ≤ 1.0), a high-entropy alloy powder (HEAP), are prepared by mechanical alloying (MA). The influence of Cr doping on the phase structure, microstructure, and magnetic properties is thoroughly investigated through X-ray diffraction (XRD), scanning electron microscopy (SEM), and vibrating sample magnetometry. It is found that this alloy has formed a simple body-centered cubic structure with a minute face-centered cubic structure for Mn to Cr replacement with heat treatment. The lattice parameter, average crystallite size, and grain size decrease by replacing Cr with Mn. The SEM analysis of FeCoNiAlMn showed no grain boundary formation, depicting a single-phase microstructure after MA, similar to XRD. The saturation magnetization first increases (68 emu/g) up to x = 0.6 and then decreases with complete substitution of Cr. Magnetic properties are related to crystallite size. FeCoNiAlMn0.4Cr0.6 HEAP has shown optimum results with better saturation magnetization and coercivity as a soft magnet.

9.
Curr Probl Cardiol ; 48(7): 101664, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36841315

RESUMEN

Cardiovascular diseases (CVDs) are one of the leading disorders of serious death and cause huge economic loss to patients and society. It is estimated that about 18 million people have a high death ratio due to the incidence of CVDs such as (stroke, coronary heart disease, and non-ischemic heart failure). Bioactive compounds (BACs) are healthy nutritional ingredients providing beneficial effects and nutritional value to the human body. Epidemiological studies strongly shed light on several bioactive compounds that are favorable candidates for CVDs treatment. Globally, the high risk of CVDs and related results on human body parts made them a serious scenario in all communities. In this present review, we intend to collect previously published data concerned over the years concerning green-colored foods and their BACs that aim to work in the prevention, diagnosis, and/or systematic treating CVDs. We also comprehensively discussed the oral delivery of several bioactive compounds derived from fruits and vegetables and their bioavailability and physiological effects on human health. Moreover, their important characteristics, such as anti-inflammatory, lowering blood pressure, anti-obesity, antioxidant, anti-diabetics, lipid-lowering responses, improving atherosclerosis, and cardio protective properties, will be elaborated further. More precisely, medicinal plants' advantages and multifaceted applications have been reported in this literature to treat CVDs. To the best of our knowledge, this is our first attempt that will open a new window in the area of CVDs with the opportunity to achieve a better prognosis and effective treatment for CVDs.


Asunto(s)
Enfermedades Cardiovasculares , Enfermedad Coronaria , Insuficiencia Cardíaca , Humanos , Enfermedades Cardiovasculares/epidemiología , Frutas , Antiinflamatorios
10.
Curr Probl Cardiol ; 48(9): 101821, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37211304

RESUMEN

The achievement of genome-wide association studies (GWAS) has rapidly progressed our understanding of the etiology of coronary artery disease (CAD). It unlocks new strategies to strengthen the stalling of CAD drug development. In this review, we highlighted the recent drawbacks, mainly pointing out those involved in identifying causal genes and interpreting the connections between disease pathology and risk variants. We also benchmark the novel insights into the biological mechanism behind the disease primarily based on outcomes of GWAS. Furthermore, we also shed light on the successful discovery of novel treatment targets by introducing various layers of "omics" data and applying systems genetics strategies. Lastly, we discuss in-depth the significance of precision medicine that is helpful to improve through GWAS analysis in cardiovascular research.


Asunto(s)
Enfermedad de la Arteria Coronaria , Humanos , Enfermedad de la Arteria Coronaria/genética , Enfermedad de la Arteria Coronaria/terapia , Estudio de Asociación del Genoma Completo , Predisposición Genética a la Enfermedad , Factores de Riesgo , Medicina de Precisión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA