Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Mol Biol Rep ; 51(1): 584, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38683231

RESUMEN

BACKGROUND: Sugar beet (Beta vulgaris L.) holds significant importance as a crop globally cultivated for sugar production. The genetic diversity present in sugar beet accessions plays a crucial role in crop improvement programs. METHODS AND RESULTS: During the present study, we collected 96 sugar beet accessions from different regions and extracted DNA from their leaves. Genomic DNA was amplified using SCoT primers, and the resulting fragments were separated by gel electrophoresis. The data were analyzed using various genetic diversity indices, and constructed a population STRUCTURE, applied the unweighted pair-group method with arithmetic mean (UPGMA), and conducted Principle Coordinate Analysis (PCoA). The results revealed a high level of genetic diversity among the sugar beet accessions, with 265 bands produced by the 10 SCoT primers used. The percentage of polymorphic bands was 97.60%, indicating substantial genetic variation. The study uncovered significant genetic variation, leading to higher values for overall gene diversity (0.21), genetic distance (0.517), number of effective alleles (1.36), Shannon's information index (0.33), and polymorphism information contents (0.239). The analysis of molecular variance suggested a considerable amount of genetic variation, with 89% existing within the population. Using STRUCTURE and UPGMA analysis, the sugar beet germplasm was divided into two major populations. Structure analysis partitioned the germplasm based on the origin and domestication history of sugar beet, resulting in neighboring countries clustering together. CONCLUSION: The utilization of SCoT markers unveiled a noteworthy degree of genetic variation within the sugar beet germplasm in this study. These findings can be used in future breeding programs with the objective of enhancing both sugar beet yield and quality.


Asunto(s)
Beta vulgaris , Variación Genética , Beta vulgaris/genética , Variación Genética/genética , Marcadores Genéticos , Polimorfismo Genético , Filogenia , Genética de Población/métodos , Alelos , Fitomejoramiento/métodos , ADN de Plantas/genética
2.
Biochem Genet ; 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38347291

RESUMEN

RCI2/PMP3s are involved in biotic and abiotic stresses and have an influence on the regulation of many genes. RCI2/PMP3 genes, which particularly encode small membrane proteins of the PMP3 family, are involved in abiotic stress responses in plants. In this work, in silico studies were used to investigate RCI2's potential function in stress tolerance and organogenesis. We conducted an extensive study of the RCI2 gene family and revealed 36 RCI2 genes from cotton species that were distributed over 36 chromosomes of the cotton genome. Functional and phylogenetic examination of the RCI2/PMP3 gene family has been studied in Arabidopsis, but in cotton, the RCI2/PMP3 genes have not yet been studied. Phylogenetic and sequencing studies revealed that cotton RCI2s are conserved, with most of them categorized into six distinct clades. A chromosome distribution and localization study indicated that cotton RCI2 genes were distributed unevenly on 36 chromosomes with segmental duplications, suggesting that the cotton RCI2 family is evolutionarily conserved. Many cis-elements related to stress responsiveness, development, and hormone responsiveness were detected in the promoter regions of the cotton RCI2. Moreover, the 36 cotton RCI2s revealed tissue-specific expression patterns in the development of cotton performed by transcriptome analysis. Gene structure analysis indicated that nearly all RCI2 genes have two exons and one intron. All of the cotton RCI2 genes were highly sensitive to drought, abscisic acid, salt, and cold treatments, demonstrating that they may be employed as genetic objects to produce stress-resistant plants.

3.
Transgenic Res ; 32(1-2): 77-93, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36806962

RESUMEN

Auxins regulate several characteristics of plant development and growth. Here, we characterized a new transcriptional activator SIARRI which binds specific DNA sequences and was revealed in Arabidopsis (ARR1). SIARRI acts as a two-component response regulator and its Arabidopsis homologous gene is AT3G16857. It belongs to the subfamily of type-B response regulators in the cytokinin signaling pathway. The study aimed to characterize the transgenic Micro-Tom plants by the overexpression of Solanum lycopersicum two-component response regulator ARR1. Overexpression of SIARRI results in a pleiotropic phenotype during fruit development and ripening. This study indicates that SIARRI is a primary regulator of leaf morphology and fruit development. Moreover, overexpressed plants showed variations in growth related to auxin as well as shorter hypocotyl elongation, enlarged leaf vascularization, and decreased apical dominance. The qRT-PCR investigation revealed that expression was downregulated at the breaker stage and high at Br+6 at various stages of fruit growth and ripening. In contrast to the fruit color, lycopene and ß-carotene concentrations in red-yellow overexpression line fruits were reduced significantly, and also slightly reduced in some red fruits. The quantity of ß-carotene in the transgenic fruits was lower than that of lycopene. This study showed that this gene might be a new transcriptional activator in fruit development and ripening. Furthermore, this study will provide new insights into tomato fruit ripening.


Asunto(s)
Arabidopsis , Solanum lycopersicum , Frutas/genética , Licopeno/metabolismo , beta Caroteno/metabolismo , Solanum lycopersicum/genética , Etilenos/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Ácidos Indolacéticos/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Regulación de la Expresión Génica de las Plantas
4.
Mol Biol Rep ; 50(6): 4799-4811, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37031323

RESUMEN

BACKGROUND: Upland cotton is one of the utmost significant strategic fiber crops, and play a vital role in the global textile industry. METHODS AND RESULTS: A total of 128 genotypes comprised Gossypium hirsutum L, Gossypium barbadense L., and pure lines were used to examine genetic diversity using iPBS-retrotransposon markers system. Eleven highly polymorphic primers yielded 287 bands and 99.65% polymorphism was recorded. The mean polymorphism information content was estimated at 0.297 and the average diversity indices for the effective number of alleles, Shannon's information index, and overall gene diversity were 1.481, 0.443, and 0.265, respectively. The analysis of molecular variance (AMOVA) revealed that 69% of the genetic variation was within the population. A model-based STRUCTURE algorithm divided the entire germplasm into four populations and one un-classified population, the genotypes G42 (originating in Egypt) and G128 (originating in the United States), showed the highest genetic distance (0.996) so these genotypes could be suggested for breeding programs as parental lines. CONCLUSIONS: This is the first investigation using an iPBS-retrotransposon marker system to examine the genetic diversity and population structure of upland cotton germplasm. The rich diversity found in upland cotton germplasm could be exploited as a genetic resource when developing breeding programs and could also help with efforts to breed cotton around the world. These findings also show the applicability and effectiveness of iPBS-retrotransposons for the molecular characterization of cotton germplasm.


Asunto(s)
Gossypium , Retroelementos , Gossypium/genética , Variación Genética/genética , Fitomejoramiento , Polimorfismo Genético/genética , Fibra de Algodón
5.
Cereal Res Commun ; : 1-24, 2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37361481

RESUMEN

Over the past few decades, the amount of ultraviolet-B radiation (UV-B) reaching the earth's surface has been altered due to climate change and stratospheric ozone dynamics. This narrow but highly biologically active spectrum of light (280-320 nm) can affect plant growth and development. Depletion of ozone and climate change are interlinked in a very complicated manner, i.e., significantly contributing to each other. The interaction of climate change, ozone depletion, and changes in UV-B radiation negatively affects the growth, development, and yield of plants. Furthermore, this interaction will become more complex in the coming years. The ozone layer reduction is paving a path for UV-B radiation to impact the surface of the earth and interfere with the plant's normal life by negatively affecting the plant's morphology and physiology. The nature and degree of the future response of the agricultural ecosystem to the decreasing or increasing UV-B radiation in the background of climate change and ozone dynamics are still unclear. In this regard, this review aims to elucidate the effects of enhanced UV-B radiation reaching the earth's surface due to the depletion of the ozone layer on plants' physiology and the performance of major cereals.

6.
Mol Biol Rep ; 49(7): 6531-6539, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35665441

RESUMEN

BACKGROUND: Safflower (Carthamus tinctorius L.) is an old oilseed crop with a 1.4 GB genome size and its flowers are used for food coloring, dyes and pharmaceutical industries. It was domesticated from its putative wild ancestor Carthamus palestinus about forty-five hundred years ago in the fertile crescent region.The current study was aimed to determine the genetic diversity, population structure and to check the applicability of iPBS-retrotransposons markers. METHODS AND RESULTS: Eleven POGP primers yielded 70 bands of which 61 were highly polymorphic with 87.14% polymorphism. A great level of genetic variation was examined with higher values of overall gene diversity (0.27), genetic distance (0.53), number of effective alleles (1.46), Shannon's information index (0.41) and polymorphism information contents (0.71). Analysis of molecular variance revealed high genetic variation with 79% within the population. The STRUCTURE, PCoA and Neighbor-joining analysis separated the safflower germplasm into 2 major populations and 1 un-classified population. The accessions which were from Asian countries i.e., China, Afghanistan, Turkey, Iran and Pakistan were genetically similar and clustered together in both populations A and B. The maximum genetic distance was measured 0.88 between Pakistan 26 x Pakistan 24. CONCLUSION: Findings of this research such as maximum diversity indices, higher PIC values showed the effectiveness and utility of POGP markers for the evaluation of genetic relationships among safflower accessions. The results of this study also showed that POGP markers are less effective compared to ISSRs, iPBS-retrotransposons and DArTSeq markers. AMOVA showed high genetic variation (79%) within a population and maximum genetic distance was found between the accessions Pakistan 26- Pakistan 24 and may be suggested as candidate parents for future breeding activities of safflower. The accessions from the fertile crescent region were clustered together and proved the origin of safflower domestication. This study highlights genetic variation among safflower germplasm and could be helpfull for parental selection and planning for future breeding programs.


Asunto(s)
Carthamus tinctorius , Carthamus tinctorius/genética , Colorantes , ADN de Plantas/genética , Variación Genética/genética , Pakistán , Peroxidasa/genética , Fitomejoramiento , Polimorfismo Genético/genética , Retroelementos
7.
Mol Biol Rep ; 49(4): 2553-2564, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35023008

RESUMEN

BACKGROUND: Rosewood (Aniba rosaeodora Ducke), which has a great demand due to its essential oil globally, is an evergreen tree of the Amazon forests. Rosewood natural stands have been depleted through deforestation and the destruction of habitat. Currently, rosewood is included in the ICUN red list of endangered species. METHODS AND RESULTS: The 11 highly polymorphic primers amplified total 305 bands of which 301 (98.69%) were polymorphic. The number of effective alleles (Ne), Shannon's information index (I), overall gene diversity (Ht), gene diversity (h), and polymorphism information content (PIC) were (1.562), (0.505), (0.330), (0.337) and (0.343), respectively. These diversity indices explored high genetic diversity in rosewood germplasm. Among studied germplasm, the Santa Marta population was found most diverse by reflecting higher values of diversity indices while the Zungarococha population was found least diverse. The analysis of molecular variance (AMOVA) revealed that 79% of the genetic variation was within the populations. The STRUCTURE algorithm, unweighted pair group with arithmetic mean (UPGMA), and principal coordinate's analysis (PCoA) separated all germplasms into different population groups according to their geographic locations. Santa Marta population was found more diverse by reflecting higher values of diversity indices. The maximum genetic distance (0.868) was found between the Huajoya-10 and Nanay-3. In this investigation, iPBS- retrotransposon marker system was used to explore the genetic diversity of Peruvian rosewood germplasm. CONCLUSIONS: The results in this study such as higher genetic diversity indices, AMOVA (79%) within population and PIC value (0.343) showed the utility and reproducibility of iPBS-retrotransposons in this species successfully. The STRUCTURE algorithm separated the germplasms into six population groups according to their geographic locations. These results have valuable information for the conservation, management strategies and future breeding activities of rosewood.


Asunto(s)
Variación Genética , Retroelementos , Sitios de Unión , Variación Genética/genética , Repeticiones de Microsatélite/genética , Perú , Filogenia , Fitomejoramiento , Reproducibilidad de los Resultados , Retroelementos/genética
8.
J Biomol Struct Dyn ; : 1-13, 2023 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-37837436

RESUMEN

Drought has emerged as a significant global concern in recent years, leading to a proliferation of research on sorghum, an important drought resistant crop. Consequently, conducting a bibliometric analysis of said publications has the potential to yield insights into current areas of interest and potential avenues for future research. The present study utilized the Web of Science database to gather literature published between the years 2000 and 2022. The search terms 'drought' AND 'sorghum' was employed to identify relevant publications and as a result, 1731 publications were obtained. The bibliometric analysis of the obtained articles was conducted using VOSviewer software (1.6.19). The keyword 'sorghum' was found to have the highest frequency, with a total link strength of 4238. This keyword exhibited a strong association with the terms 'drought' and 'drought tolerance'. The average number of citations for the 100 most-cited articles was 509.2. The journal Crop Science attained the top position with 60 published articles and secured the highest number of citations with a count of 2795. The academic works of Graeme L. Hammer, comprising 40 articles affiliated with the University of Queensland (UQ), have garnered a total of 3612 citations. Similarly, the same university has produced 112 articles that have been cited 5551 times, thereby establishing it as the most frequently cited organization, with Hammer receiving the highest citation count. UQ had a total of 41 collaborators, with a cumulative link strength of 115. The USA has the highest number of articles pertaining to drought and sorghum. The published literature has focused on abiotic stress tolerance, genetic analysis, and physiological traits, among others. It is anticipated that there will be a substantial rise in the quantity of worldwide publications pertaining to drought and sorghum. The USA offered a significant contribution to this emerging field.Communicated by Ramaswamy H. Sarma.

9.
Front Genet ; 14: 1150616, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37252661

RESUMEN

Sorghum is emerging as a model crop for functional genetics and genomics of tropical grasses with abundant uses, including food, feed, and fuel, among others. It is currently the fifth most significant primary cereal crop. Crops are subjected to various biotic and abiotic stresses, which negatively impact on agricultural production. Developing high-yielding, disease-resistant, and climate-resilient cultivars can be achieved through marker-assisted breeding. Such selection has considerably reduced the time to market new crop varieties adapted to challenging conditions. In the recent years, extensive knowledge was gained about genetic markers. We are providing an overview of current advances in sorghum breeding initiatives, with a special focus on early breeders who may not be familiar with DNA markers. Advancements in molecular plant breeding, genetics, genomics selection, and genome editing have contributed to a thorough understanding of DNA markers, provided various proofs of the genetic variety accessible in crop plants, and have substantially enhanced plant breeding technologies. Marker-assisted selection has accelerated and precised the plant breeding process, empowering plant breeders all around the world.

10.
Front Plant Sci ; 13: 952759, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36247536

RESUMEN

The world is facing rapid climate change and a fast-growing global population. It is believed that the world population will be 9.7 billion in 2050. However, recent agriculture production is not enough to feed the current population of 7.9 billion people, which is causing a huge hunger problem. Therefore, feeding the 9.7 billion population in 2050 will be a huge target. Climate change is becoming a huge threat to global agricultural production, and it is expected to become the worst threat to it in the upcoming years. Keeping this in view, it is very important to breed climate-resilient plants. Legumes are considered an important pillar of the agriculture production system and a great source of high-quality protein, minerals, and vitamins. During the last two decades, advancements in OMICs technology revolutionized plant breeding and emerged as a crop-saving tool in wake of the climate change. Various OMICs approaches like Next-Generation sequencing (NGS), Transcriptomics, Proteomics, and Metabolomics have been used in legumes under abiotic stresses. The scientific community successfully utilized these platforms and investigated the Quantitative Trait Loci (QTL), linked markers through genome-wide association studies, and developed KASP markers that can be helpful for the marker-assisted breeding of legumes. Gene-editing techniques have been successfully proven for soybean, cowpea, chickpea, and model legumes such as Medicago truncatula and Lotus japonicus. A number of efforts have been made to perform gene editing in legumes. Moreover, the scientific community did a great job of identifying various genes involved in the metabolic pathways and utilizing the resulted information in the development of climate-resilient legume cultivars at a rapid pace. Keeping in view, this review highlights the contribution of OMICs approaches to abiotic stresses in legumes. We envisage that the presented information will be helpful for the scientific community to develop climate-resilient legume cultivars.

11.
Biomed Res Int ; 2022: 5707953, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36277895

RESUMEN

The Peelu (Salvadora oleoides Decne.) fruit is well known for its nutritional and medicinal values. The current study analyzed the chemical composition of Salvadora oleoides fruit. Fresh Peelu fruits were harvested, and physicochemical properties, proximate composition, macro- and micronutrients, and phytochemical properties were determined. Moreover, ethanol and methanol fruit extract was analyzed for physicochemical properties. The Peelu fruit seemed to be a potential source of essential macro- ((nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), and magnesium (Mg)) and micronutrients (zinc (Zn), manganese (Mn), iron (Fe), and copper (Cu)). The fruit had significant biochemical properties (total soluble solids (TSS), total acidity (TA), and TSS : TA ratio) with appreciable moisture, crude fiber, and ash contents. The fruit extracts demonstrated significantly higher antioxidants and phenolics, ascorbic acid contents, and carotenoids. Phytochemical screening of fruit revealed the presence of coumarins, flavonoids, phlobatannins, tannins, and terpenoids. Physicochemical and sensory evaluation of extracts indicated its potential for further in vivo study trials. The Peelu fruit was found to be a good source of mineral nutrients, proximate contents, vitamins (ascorbic acid and carotenoid), phytochemicals (total phenolic sand antioxidant contents), and pharmaceutically important metabolites that can be used as functional drink.


Asunto(s)
Antioxidantes , Salvadoraceae , Antioxidantes/análisis , Frutas/química , Metanol , Manganeso , Cobre/análisis , Magnesio , Calcio/análisis , Arena , Extractos Vegetales/química , Fitoquímicos/análisis , Minerales/análisis , Fenoles/análisis , Vitaminas , Ácido Ascórbico , Carotenoides , Flavonoides/análisis , Taninos/análisis , Zinc/análisis , Hierro/análisis , Fósforo , Potasio , Cumarinas , Etanol , Nitrógeno/análisis
12.
Front Genet ; 13: 1104635, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36712883

RESUMEN

Citrus viroid infection is emerging as a serious threat because of its efficient systemic movement within the host plant and its quick spread due to contaminated pruning tools. A survey was conducted to investigate the primary distribution and molecular characterization of Citrus bent leaf viroid (CBLVd) and its variants in different citrus cultivars. A total of 154 symptomatic citrus samples were collected and detected by RT‒PCR with newly designed specific primers with the incidence of 36.33%. During biological indexing study on Etrog citron, expressions of reduced leaf size, yellowing with a light green pattern, and bending were observed. Amplified products were sequenced and analyzed using a nucleotide BLAST search, which showed 98% homology with other CBLVd isolates. The results of the phylogenetic tree analysis showed the presence of two main groups (A and B), with the predominant variants of CBLVd, i.e., CVd-I-LSS (Citrus viroid Low Sequence Similarity) sequences, clustering in subgroup A1 along with newly detected CVd-I-LSS from Palestinian sweet lime (Citrus limettioides), which has been identified as a new host of CVd-I-LSS in Pakistan. Further analysis of the sequences in subgroup A1 showed that the variant of CVd-I-LSS infecting citrus cultivars had a close relationship with isolates reported from China, Japan, and Iran, which may have resulted from the exchange of planting material. This study also unveiled the variability in nucleotide sequences of CBLVd, which made it unable to be detected by old primers. The results of this study indicate that the widespread presence of divergent variants of CBLVd is a major concern for the citrus industry in Pakistan and other countries where virulent isolates of CBLVd are prevalent. These findings suggest the need for future research on effective management and quarantine measures to stop the spread of CBLVd.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA