Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nanotechnology ; 32(31)2021 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-33873163

RESUMEN

High-density polyethylene (HDPE)-based hybrid nanocomposites containing graphene nanoplatelets (GnPs) and multiwall carbon nanotubes (MWCNTs) were fabricated using melt mixing followed by compression molding. The influences of size and weight ratio of both carbon-based nanofillers on the electrical, thermal, and mechanical properties of hybrid nanocomposites were evaluated. This study proves that the size and weight ratio of carbon-based nanofillers play a critical role in determining these properties. The optimum size and weight ratio of GnPs and MWCNTs are determined at the maximum achieved enhancement for each property. The HDPE-based nanocomposites containing GnPs with larger surface area and MWCNTs with higher aspect ratio display the highest electrical conductivity at GnPs/MWCNTs weight ratio of 2/3. The combination of GnPs with larger surface area and MWCNTs with lower aspect ratio provides the maximum Young's modulus enhancement of hybrid nanocomposites at 1/4 weight ratio of GnPs and MWCNTs. The nanocomposite containing GnPs with the largest lateral size and MWCNTs with a higher aspect ratio at a 3/2 weight ratio exhibits the highest thermal conductivity. Also, at around the percolation threshold of GnPs, the incorporation of MWCNTs with larger aspect ratio into the HDPE-based nanocomposites containing GnPs with the largest lateral size shows a distinct synergic effect on the thermal conductivity and Young's modulus, while an additive effect on the electrical conductivity and thermal stability.

2.
ACS Omega ; 8(22): 19265-19272, 2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37305232

RESUMEN

In order to improve the thermal conductivity of 30 wt % synthetic graphite (SG)-filled polyketones (POKs), conductive fillers such as multiwall carbon nanotubes (CNTs) and hexagonal boron nitride (BN) were used in this study. Individual and synergistic effects of CNTs and BN on 30 wt % synthetic graphite-filled POK on thermal conductivity were investigated. 1, 2, and 3 wt % CNT loading enhanced the in-plane and through-plane thermal conductivities of POK-30SG by 42, 82, and 124% and 42, 94, and 273%, respectively. 1, 2, and 3 wt % BN loadings enhanced the in-plane thermal conductivity of POK-30SG by 25, 69, and 107% and through-plane thermal conductivity of POK-30SG by 92, 135, and 325%. It was observed that while CNT shows more efficient in-plane thermal conductivity than BN, BN shows more efficient through-plane thermal conductivity. The electrical conductivity value of POK-30SG-1.5BN-1.5CNT was obtained to be 1.0 × 10-5 S/cm, the value of which is higher than that of POK-30SG-1CNT and lower than that of POK-30SG-2CNT. While BN loading led to a higher heat deflection temperature (HDT) than CNT loading, the hybrid fillers of BNT and CNT led to the highest HDT value. Moreover, BN loading led to higher flexural strength and Izod-notched impact strength values than CNT loading.

3.
ACS Omega ; 8(10): 9415-9422, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36936344

RESUMEN

The effect of zinc borate (ZB) and high-molecular-weight siloxane (SIL) on flame retardancy, mechanical, and thermal properties of aliphatic polyketone (POK)-containing aluminum diethyl phosphinate (OF) was investigated in this study. Ten wt % OF is sufficient to obtain V0 rating according to the UL94 test. As the weight fraction of OF was increased, the flame retardancy properties and LOI values improved, while the tensile and impact properties decreased. To avoid the degradation in mechanical and impact properties as much as possible and obtain the same and better flame retardancy properties, synergists such as SIL and ZB were used. Flame retardancy of POK-based composites was determined by the limiting oxygen index (LOI) test, UL94 measurement, and cone calorimeter test. The additions of 1 wt % SIL and ZB have not led to a considerable decrease in the tensile strength and impact properties of POK-10OF. While ZB and SIL are very efficient in decreasing the smoke density, ZB is more efficient than SIL in increasing the LOI value of the composite. The addition of 1, 2, and 4 wt % ZB and SIL synergists did not lower their UL94 ratings. Moreover, it can be added that ZB is more efficient than SIL in decreasing the fire growth rate (FIGRA) and maximum average rate of heat emission (MARHE) values. Using OF (10 wt %) and ZB (4 wt %), LOI values higher than 32% and smoke density values lower than 150 were obtained.

4.
ACS Omega ; 7(33): 28885-28895, 2022 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-36033680

RESUMEN

In this study, halogen-free flame retardants and metal synergist materials were used to enhance the flammability of PA6. PA6-based composites including various fractions of additives were manufactured using a twin-screw extruder and an injection molding machine. Mechanical, thermal, physical, morphological, and flame retardant properties were investigated with several characterization methods. The study aims to meet R22 requirements based on the EN45545 standard for fire protection of railway vehicles, according to which limiting oxygen index (LOI), smoke density, and conventional index of toxicity (CIT) values under HL3 hazard levels have to be min 32%, max 300, and max 1.5, respectively. 15FR-2MH, 15FR-5MH, 15FR-1MH-1ZB, 15FR-1MH-1BOH, and 15FR-1MH-1SIL composites exhibited both the required smoke density, CIT, and LOI values for R22. It can be said that hybrid synergists provide all requirements according to the R22-EN45545 standard. Instead of using 15FR-2MH, 15FR-1MH-1BOH led to a lower smoke density value for PA6.

5.
ACS Omega ; 7(49): 45518-45526, 2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36530296

RESUMEN

Syndiotactic polystyrene (SPS) has attracted considerable attention recently due to its high melting temperature, low cost, and relatively low density value. The aim of the study is to reveal whether a blend of PPS and SPS (PPS-SPS) can be used instead of PPS for high thermal stability, high mechanical performance, and high thermal conductive material applications. For this aim, poly(phenylene sulfide)/syndiotactic polystyrene-based carbon-loaded composite materials were prepared using a twin screw extruder. Two carbon-based materials, carbon fiber (CF) and synthetic graphite (SG), were used to improve the mechanical properties and thermal conductivity of the PPS-SPS blends. Through-plane conductivity values of PPS-30SG-10CF and PPS-SPS-30SG-10CF were obtained to be 13.67 and 12.92 W/mK, with densities of 1.55 and 1.50 g/cm3, respectively. It was demonstrated that PPS-SPS blend-based carbon-loaded composites have great potential to be used in thermal management applications with the advantages of relatively low cost and lightweight compared to PPS-based composites.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA