Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Angew Chem Int Ed Engl ; 61(17): e202115041, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35133040

RESUMEN

The regulation of protein uptake and secretion is crucial for (inter)cellular signaling. Mimicking these molecular events is essential when engineering synthetic cellular systems. A first step towards achieving this goal is obtaining control over the uptake and release of proteins from synthetic cells in response to an external trigger. Herein, we have developed an artificial cell that sequesters and releases proteinaceous cargo upon addition of a coded chemical signal: single-stranded DNA oligos (ssDNA) were employed to independently control the localization of a set of three different ssDNA-modified proteins. The molecular coded signal allows for multiple iterations of triggered uptake and release, regulation of the amount and rate of protein release and the sequential release of the three different proteins. This signaling concept was furthermore used to directionally transfer a protein between two artificial cell populations, providing novel directions for engineering lifelike communication pathways inside higher order (proto)cellular structures.


Asunto(s)
Células Artificiales , Células Artificiales/química , ADN/química , Ingeniería , Proteínas/química
2.
Chembiochem ; 20(20): 2643-2652, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31012235

RESUMEN

The bottom-up construction of cell mimics has produced a range of membrane-bound protocells that have been endowed with functionality and biochemical processes reminiscent of living systems. The contents of these compartments, however, experience semidilute conditions, whereas macromolecules in the cytosol exist in protein-rich, crowded environments that affect their physicochemical properties, such as diffusion and catalytic activity. Recently, complex coacervates have emerged as attractive protocellular models because their condensed interiors would be expected to mimic this crowding better. Here we explore some relevant physicochemical properties of a recently developed polymer-stabilized coacervate system, such as the diffusion of macromolecules in the condensed coacervate phase, relative to in dilute solutions, the buffering capacity of the core, the molecular organization of the polymer membrane, the permeability characteristics of this membrane towards a wide range of compounds, and the behavior of a simple enzymatic reaction. In addition, either the coacervate charge or the cargo charge is engineered to allow the selective loading of protein cargo into the coacervate protocells. Our in-depth characterization has revealed that these polymer-stabilized coacervate protocells have many desirable properties, thus making them attractive candidates for the investigation of biochemical processes in stable, controlled, tunable, and increasingly cell-like environments.


Asunto(s)
Células Artificiales/química , Sustancias Macromoleculares/química , Polímeros/química , Proteínas/química , Células Artificiales/citología
3.
Adv Mater ; 35(29): e2300947, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37027309

RESUMEN

Membraneless organelles are important for spatial organization of proteins and regulation of intracellular processes. Proteins can be recruited to these condensates by specific protein-protein or protein-nucleic acid interactions, which are often regulated by post-translational modifications. However, the mechanisms behind these dynamic, affinity-based protein recruitment events are not well understood. Here, a coacervate system that incorporates the 14-3-3 scaffold protein to study enzymatically regulated recruitment of 14-3-3-binding proteins is presented, which mostly bind in a phosphorylation-dependent manner. Synthetic coacervates are efficiently loaded with 14-3-3, and phosphorylated binding partners, such as the c-Raf pS233/pS259 peptide (c-Raf), show 14-3-3-dependent sequestration with up to 161-fold increase in local concentration. The c-Raf domain is fused to green fluorescent protein (GFP-c-Raf) to demonstrate recruitment of proteins. In situ phosphorylation of GFP-c-Raf by a kinase leads to enzymatically regulated uptake. The introduction of a phosphatase into coacervates preloaded with the phosphorylated 14-3-3-GFP-c-Raf complex results in a significant cargo efflux mediated by dephosphorylation. Finally, the general applicability of this platform to study protein-protein interactions is demonstrated by the phosphorylation-dependent and 14-3-3-mediated active reconstitution of a split-luciferase inside artificial cells. This work presents an approach to study dynamically regulated protein recruitment in condensates, using native interaction domains.


Asunto(s)
Dominios y Motivos de Interacción de Proteínas , Células Artificiales , Proteínas 14-3-3/química , Péptidos/química , Fosforilación
4.
Sci Rep ; 11(1): 4951, 2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33654191

RESUMEN

Encapsulins are recently discovered protein compartments able to specifically encapsulate cargo proteins in vivo. Encapsulation is dependent on C-terminal targeting peptides (TPs). Here, we characterize and engineer TP-shell interactions in the Thermotoga maritima and Myxococcus xanthus encapsulin systems. Using force-field modeling and particle fluorescence measurements we show that TPs vary in native specificity and binding strength, and that TP-shell interactions are determined by hydrophobic and ionic interactions as well as TP flexibility. We design a set of TPs with a variety of predicted binding strengths and experimentally characterize these designs. This yields a set of TPs with novel binding characteristics representing a potentially useful toolbox for future nanoreactor engineering aimed at controlling cargo loading efficiency and the relative stoichiometry of multiple concurrently loaded cargo proteins.


Asunto(s)
Proteínas Bacterianas/química , Modelos Moleculares , Myxococcus xanthus/química , Nanoestructuras/química , Péptidos/química , Thermotoga maritima/química
5.
Methods Enzymol ; 646: 51-82, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33453933

RESUMEN

The utilization of liquid-liquid phase separated systems has seen increased attention as synthetic cell platforms due to their innate ability to sequester interesting, functional, and biologically relevant materials. However, their applications are limited by the temporal stability of such condensed phases. While there are a number of strategies toward droplet stabilization, in our group we have developed a polymer-based approach to stabilize complex coacervate microdroplets. These protocells are remarkably robust and have been utilized to support a number of new protocellular applications. Here, we describe in detail the methodologies we have developed for the synthesis of the starting components, their formation into stable, cargo-loaded protocells, and how these protocells are treated post-formation to purify and analyze the resultant functional self-assembled systems.


Asunto(s)
Células Artificiales , Polímeros
6.
Nat Commun ; 11(1): 6282, 2020 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-33293610

RESUMEN

The cell cytosol is crowded with high concentrations of many different biomacromolecules, which is difficult to mimic in bottom-up synthetic cell research and limits the functionality of existing protocellular platforms. There is thus a clear need for a general, biocompatible, and accessible tool to more accurately emulate this environment. Herein, we describe the development of a discrete, membrane-bound coacervate-based protocellular platform that utilizes the well-known binding motif between Ni2+-nitrilotriacetic acid and His-tagged proteins to exercise a high level of control over the loading of biologically relevant macromolecules. This platform can accrete proteins in a controlled, efficient, and benign manner, culminating in the enhancement of an encapsulated two-enzyme cascade and protease-mediated cargo secretion, highlighting the potency of this methodology. This versatile approach for programmed spatial organization of biologically relevant proteins expands the protocellular toolbox, and paves the way for the development of the next generation of complex yet well-regulated synthetic cells.


Asunto(s)
Células Artificiales/química , Ingeniería Celular/métodos , Proteínas Recombinantes/química , Células Artificiales/citología , Clonación Molecular , Citosol/química , Proteínas Recombinantes/genética , Biología Sintética
7.
Nat Commun ; 9(1): 1311, 2018 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-29615617

RESUMEN

Compartmentalization of proteins into organelles is a promising strategy for enhancing the productivity of engineered eukaryotic organisms. However, approaches that co-opt endogenous organelles may be limited by the potential for unwanted crosstalk and disruption of native metabolic functions. Here, we present the construction of synthetic non-endogenous organelles in the eukaryotic yeast Saccharomyces cerevisiae, based on the prokaryotic family of self-assembling proteins known as encapsulins. We establish that encapsulins self-assemble to form nanoscale compartments in yeast, and that heterologous proteins can be selectively targeted for compartmentalization. Housing destabilized proteins within encapsulin compartments afford protection against proteolytic degradation in vivo, while the interaction between split protein components is enhanced upon co-localization within the compartment interior. Furthermore, encapsulin compartments can support enzymatic catalysis, with substrate turnover observed for an encapsulated yeast enzyme. Encapsulin compartments therefore represent a modular platform, orthogonal to existing organelles, for programming synthetic compartmentalization in eukaryotes.


Asunto(s)
Reactores Biológicos , Catálisis , Células Eucariotas/metabolismo , Células Procariotas/metabolismo , Saccharomyces cerevisiae/metabolismo , Aldehídos/química , Células Artificiales , Proteínas Bacterianas/metabolismo , Clonación Molecular , Microscopía Electrónica de Transmisión , Nanotecnología , Orgánulos/metabolismo , Dominios Proteicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA